[1] K. T. Andrews: 
Dunford-Pettis sets in the space of Bochner integrable functions. Math. Ann., (1979), 35-41. 
MR 0531148 | 
Zbl 0398.46025[4] F. Bombal: Sobre algunas propiedades de Espacio de Banach. To appear in Rev. Acad. Ci. Madrid.
[6] F. Bombal, C. Fierro: 
Compacidad débil en espacios de Orlicz de funciones vectoriales. Rev. Acad. Ci. Madrid, 78 (1984), 157-163. 
MR 0799701[8] J. Bourgain: 
An averaging result for $l\sb 1$-sequences and applications to weakly conditionally compact sets in $L\sp{1}\sb{X}$. Israel J. of Math., vol. 32 (1979), 289-298. 
DOI 10.1007/BF02760458 | 
MR 0571083[10] J. Diestel: 
Sequences and series in Banach spaces. Graduate texts in Math., no. 92. Springer, 1984. 
MR 0737004[11] J. Diestel, J. J. Uhl, Jr.: 
Vector measures. Amer. Math. Soc. Mathematical Surveys, Vol. 15. Providence, R.I., 1977. 
MR 0453964 | 
Zbl 0369.46039[12] C. Fierro: Compacidad débil en espacios de funciones y medidas vectoriales. Thesis. Madrid, 1980.
[15] G. Emmanuele: 
On the Banach spaces with the property (V*) of Pelczynski. Annali Mat. Pura e Applicata, 152 (1988), 171-181. 
MR 0980978[16] A. Pelczynski: 
On Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Pol. Sci., 10 (1962), 641-648. 
MR 0149295[17] G. Pisier: 
Une propriété de stabilité de la classe des espaces ne contenant pas $l^1$. C. R. Acad. Sci. Paris Ser. A 286 (1978), 747-749. 
MR 0511805[18] E. Saab, P. Saab: 
On Pelczynski's property (V) and (V*). Pacific J. Math., 125 (1986), 205-210. 
MR 0840703