Title:

Thermal stresses in an initially stressed circular cylinder with a smooth rigid insulating cover on the curved surface (English) 
Author:

Ghosh, Subhash Chandra 
Language:

English 
Journal:

Aplikace matematiky 
ISSN:

03736725 
Volume:

15 
Issue:

5 
Year:

1970 
Pages:

310320 
Summary lang:

English 
Summary lang:

Czech 
. 
Category:

math 
. 
Summary:

The expressions for the thermal stresses in an initially stressed isotropic finite cylinder with a smooth rigid insulating cover on the curved surface have been obtained when the plane ends of the cylinder have prescribed temperature distributions. Numerical results have also been deduced showing the variation of $[t_{00}]_{r=1}$ for the particular material known as Mooney type material when the temperature distributions on the plane ends are either constant of paraboloidal. () 
MSC:

74B10 
MSC:

74B99 
MSC:

74H99 
idZBL:

Zbl 0218.73016 
DOI:

10.21136/AM.1970.103302 
. 
Date available:

20080520T17:48:38Z 
Last updated:

20200728 
Stable URL:

http://hdl.handle.net/10338.dmlcz/103302 
. 
Reference:

[1] Green A. E., Rivlin R. S., Shield R. T.: General theory of small elastic deformations superposed on finite elastic deformations.Proc. Roy. SOC. A. 211 (1962), pp. 128154. MR 0047486 
Reference:

[2] Green A. E., Zerna W.: Theoretical Elasticity.(1954) Oxford Clarendon Press. Zbl 0056.18205, MR 0064598 
Reference:

[3] England A. H., Green A. E.: SteadyState thermoelasticity for initially stressed bodies.Phil. Trans. Roy. Soc. London. Vol 253 No. 1034 (1961), pp. 517542. MR 0137402 
Reference:

[4] Green A. E., Adkins A. E.: Large Elastic deformation.(1960), Oxford Clarendon Press. 
Reference:

[5] Das B.: Thermal Stresses in an aeolotropic circular cylinder with a smooth rigid insulating cover on the curved surface.Arch. Mech. Stos. 5.14 (1962), pp. 789796. Zbl 0109.43104 
Reference:

[6] Bhattacharyya S. P.: On thermal stresses in a semiinfinite initially stressed solid due to prescribed temperature distribution on its surface.Ind. Jour. of Theo. Phys. 5.1 (1967), pp. 1328. 
Reference:

[7] Watson G. N.: A treatise on the theory of Bessel Functions.2nd Edn. Cambridge University Press. Zbl 0849.33001, MR 1349110 
. 