Previous |  Up |  Next


Title: Contact between elastic perfectly plastic bodies (English)
Author: Haslinger, Jaroslav
Author: Hlaváček, Ivan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 27
Issue: 1
Year: 1982
Pages: 27-45
Summary lang: English
Summary lang: Czech
Summary lang: Russian
Category: math
Summary: If the material of the bodies is elastic perfectly plastic, obeying the Hencky's law, the formulation in terms of stresses is more suitable than that in displacements. The Haar-Kármán principle is first extended to the case of a unilateral contact between two bodies without friction. Approximations are proposed by means of piecewise constant triangular finite elements. Convergence of the method is proved for any regular family of triangulations. (English)
Keyword: elastic perfectly plastic
Keyword: Hencky’s law
Keyword: extension of Haar-Kármán principle
Keyword: case of unilateral contact on boundary
Keyword: piecewise constant triangular elements
Keyword: convergence
Keyword: any regular family of triangulations
Keyword: simplification
Keyword: approximate problem with bounded contact zone
Keyword: nonlinear
MSC: 49D37
MSC: 49M37
MSC: 73T05
MSC: 74A55
MSC: 74M15
MSC: 74S05
idZBL: Zbl 0495.73094
idMR: MR0640138
DOI: 10.21136/AM.1982.103943
Date available: 2008-05-20T18:18:19Z
Last updated: 2020-07-28
Stable URL:
Reference: [1a] J. Haslinger I. Hlaváček: Contact between elastic bodies. I. Continuous problems.Apl. mat. 25 (1980), 324-347. MR 0590487
Reference: [1b] J. Haslinger I. Hlaváček: Contact between elastic bodies. II. Finite element analysis.Apl. mat. 26 (1981), 263-290. MR 0623506
Reference: [1c] J. Haslinger I. Hlaváček: Contact between elastic bodies. III. Dual finite element analysis.Apl. mat. 26 (1981), 321-344. MR 0631752
Reference: [2] G. Duvaut J. L. Lions: Les inéquations en mécanique et en physique.Paris, Dunod 1972. MR 0464857
Reference: [3] B. Mercier: Sur la théorie et l'analyse numérique de problèmes de plasticité.Thésis, Université Paris VI, 1977. MR 0502686
Reference: [4] I. Hlaváček J. Nečas: Mathematical theory of elastic and elasto-plastic solids.Elsevier, Amsterdam 1981.
Reference: [5] P.-M. Suquet: Existence and regularity of solutions for plasticity problems.Proc. IUTAM Congress in Evanston - 1978.
Reference: [6] J. Céa: Optimisation, théorie et algorithmes.Dunod, Paris 1971. MR 0298892


Files Size Format View
AplMat_27-1982-1_4.pdf 2.051Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo