| Title: | An equilibrium finite element method in three-dimensional elasticity (English) | 
| Author: | Křížek, Michal | 
| Language: | English | 
| Journal: | Aplikace matematiky | 
| ISSN: | 0373-6725 | 
| Volume: | 27 | 
| Issue: | 1 | 
| Year: | 1982 | 
| Pages: | 46-75 | 
| Summary lang: | English | 
| Summary lang: | Czech | 
| Summary lang: | Russian | 
| . | 
| Category: | math | 
| . | 
| Summary: | The tetrahedral stress element is introduced and two different types of a finite piecewise linear approximation of the dual elasticity problem are investigated on a polyhedral domain. Fot both types a priori error estimates $O(h^2)$ in $L_2$-norm and $O(h^{1/2})$ in $L_\infty$-norm are established, provided the solution is smooth enough. These estimates are based on the fact that for any polyhedron there exists a strongly regular family of decomprositions into tetrahedra, which is proved in the paper, too. (English) | 
| Keyword: | composite tetrahedral equilibrium element | 
| Keyword: | two types of finite approximation | 
| Keyword: | three-dimensional problem | 
| Keyword: | polyhedral domain | 
| Keyword: | Castigliano-Menabrea’s principle | 
| Keyword: | minimum complementary energy | 
| Keyword: | a priori error estimates | 
| Keyword: | existence of strongly regular family of decompositions | 
| MSC: | 65N15 | 
| MSC: | 65N30 | 
| MSC: | 73K25 | 
| MSC: | 74B99 | 
| MSC: | 74H99 | 
| MSC: | 74P99 | 
| MSC: | 74S05 | 
| idZBL: | Zbl 0488.73072 | 
| idMR: | MR0640139 | 
| DOI: | 10.21136/AM.1982.103944 | 
| . | 
| Date available: | 2008-05-20T18:18:22Z | 
| Last updated: | 2020-07-28 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/103944 | 
| . | 
| Reference: | [1] Л.  Д. Александров: Выпуклые многогранники.H. - Л., Гостехиздат, Москва, 1950. Zbl 1157.76305 | 
| Reference: | [2] J. H. Bramble M. Zlámal: Triangular elements in the finite element method.Math. Соmр. 24 (1970), 809-820. MR 0282540 | 
| Reference: | [3] P. G. Ciarlet P. A. Raviart: General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods.Arch. Rational Mech. Anal. 46 (1972), 177-199. MR 0336957, 10.1007/BF00252458 | 
| Reference: | [4] P. G. Ciarlet: The finite element method for elliptic problems.North-Holland publishing company, Amsterdam, New York, Oxford, 1978. Zbl 0383.65058, MR 0520174 | 
| Reference: | [5] G. Duvaut J. L.  Lions: Inequalities in mechanics and physics.Springer-Verlag, Berlin, Heidelberg, New York, 1976. MR 0521262 | 
| Reference: | [6] B. J. Hartz V. B. Watwood: An equilibrium stress field model for finite element solution of two-dimensional elastostatic problems.Internat. J. Solids and Struct. 4 (1968), 857-873. 10.1016/0020-7683(68)90083-8 | 
| Reference: | [7] I. Hlaváček J. Nečas: Mathematical theory of elastic and elasto-plastic bodies.SNTL, Praha, Elsevier, Amsterdam, 1980. | 
| Reference: | [8] I. Hlaváček: Convergence of an equilibrium finite element model for plane elastostatics.Apl. Mat. 24 (1979), 427-457. MR 0547046 | 
| Reference: | [9] C. Johnson B.  Mercier: Some equilibrium finite element methods for two-dimensional elasticity problems.Numer. Math. 30 (1978), 103-116. MR 0483904, 10.1007/BF01403910 | 
| Reference: | [10] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Praha, 1967. MR 0227584 | 
| Reference: | [11] : Энциклопедия элементарной математики - Геометрия книга 4, 5.Наука, Москва, 1966. Zbl 0156.18206 | 
| . |