[1] K. Bell: 
A refined triangular plate bending finite element. Int. J. Numer. Meth. Engng. 1 (1969), 101-122. 
DOI 10.1002/nme.1620010108[2] J. H. Bramble M. Zlámal: 
Triangular elements in the finite element method. Math. Соmр. 24 (1970), 809-820. 
MR 0282540[3] J. Brilla: Visco-elastic bending of anisotropic plates. (in Slovak), Stav. Čas. 17 (1969), 153-175.
[4] J. Brilla: 
Finite element method for quasiparabolic equations. in Proc. of the 4th symposium on basic problems of numer. math., Plzeň (1978), 25-36. 
MR 0566152 | 
Zbl 0445.73060[5] P. G. Ciarlet: 
The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. 
MR 0520174 | 
Zbl 0383.65058[6] V. Girault P.-A. Raviart: 
Finite Element Approximation of the Navier-Stokes Equations. Springer-Verlag, Berlin-Heidelberg-New York, 1979. 
MR 0548867[7] J. Hřebíček: 
Numerical analysis of the general biharmonic problem by the finite element method. Apl. mat. 27 (1982), 352-374. 
MR 0674981[8] V. Kolář J. Kratochvíl F. Leitner A. Ženíšek: Calculation of plane and Space Constructions by the Finite Element Method. (Czech). SNTL, Praha, 1979.
[9] J. Kratochvíl A. Ženíšek M. Zlámal: 
A simple algorithm for the stiffness matrix of triangular plate bending finite elements. Int. J. Numer. Meth. Engng. 3 (1971), 553 - 563. 
DOI 10.1002/nme.1620030409[10] J. Nedoma: 
The finite element solution of parabolic equations. Apl. mat. 23 (1978), 408-438. 
MR 0508545 | 
Zbl 0427.65075[11] S. Turčok: Solution of quasiparabolic differential equations by finite element method. (in Slovak), Thesis, Komenský University Bratislava, (1978).
[13] M. Zlámal: 
Finite element methods for nonlinear parabolic equations. R.A.I.R.O. Numer. Anal. 11 (1977), 93-107. 
MR 0502073[14] A. Ženíšek: 
Curved triangular finite $C^m$-elements. Apl. Mat. 23 (1978), 346-377. 
MR 0502072[15] A. Ženíšek: 
Discrete forms of Friedrichs' inequalities in the finite element method. R.A.I. R. O. Numer. Anal. 15 (1981), 265-286. 
MR 0631681 | 
Zbl 0475.65072[16] A. Ženíšek: 
Finite element methods for coupled thermoelasticity and coupled consolidation of clay. (To appear in R.A.I.R.O. Numer. Anal. 18 (1984).) 
MR 0743885[17] E. Godlewski A. Puech-Raoult: 
Équations d'évolution linéaires du second ordre et méthodes multipas. R.A.I.R.O. Numer. Anal. 13 (1979), 329-353. 
MR 0555383