| Title: | Finite elements methods for solving viscoelastic thin plates (English) | 
| Author: | Růžičková, Helena | 
| Author: | Ženíšek, Alexander | 
| Language: | English | 
| Journal: | Aplikace matematiky | 
| ISSN: | 0373-6725 | 
| Volume: | 29 | 
| Issue: | 2 | 
| Year: | 1984 | 
| Pages: | 81-103 | 
| Summary lang: | English | 
| Summary lang: | Czech | 
| Summary lang: | Russian | 
| . | 
| Category: | math | 
| . | 
| Summary: | The present paper deals with numerical solution of a viscoelastic plate. The discrete problem is defined by $C^1$-elements and a linear multistep method. The effect of numerical integration is studied as well. The rate of cnvergence is established. Some examples are given in the conclusion. (English) | 
| Keyword: | viscoelastic bending | 
| Keyword: | thin plates | 
| Keyword: | finite elements in space | 
| Keyword: | finite difference in time | 
| Keyword: | rate of convergence | 
| MSC: | 65N30 | 
| MSC: | 73F15 | 
| MSC: | 73K25 | 
| MSC: | 74D99 | 
| MSC: | 74E10 | 
| MSC: | 74K20 | 
| MSC: | 74S05 | 
| idZBL: | Zbl 0541.73090 | 
| idMR: | MR0738495 | 
| DOI: | 10.21136/AM.1984.104073 | 
| . | 
| Date available: | 2008-05-20T18:24:16Z | 
| Last updated: | 2020-07-28 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/104073 | 
| . | 
| Reference: | [1] K. Bell: A refined triangular plate bending finite element.Int. J. Numer. Meth. Engng. 1 (1969), 101-122. 10.1002/nme.1620010108 | 
| Reference: | [2] J. H. Bramble M. Zlámal: Triangular elements in the finite element method.Math. Соmр. 24 (1970), 809-820. MR 0282540 | 
| Reference: | [3] J. Brilla: Visco-elastic bending of anisotropic plates.(in Slovak), Stav. Čas. 17 (1969), 153-175. | 
| Reference: | [4] J. Brilla: Finite element method for quasiparabolic equations.in Proc. of the 4th symposium on basic problems of numer. math., Plzeň (1978), 25-36. Zbl 0445.73060, MR 0566152 | 
| Reference: | [5] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174 | 
| Reference: | [6] V. Girault P.-A. Raviart: Finite Element Approximation of the Navier-Stokes Equations.Springer-Verlag, Berlin-Heidelberg-New York, 1979. MR 0548867 | 
| Reference: | [7] J. Hřebíček: Numerical analysis of the general biharmonic problem by the finite element method.Apl. mat. 27 (1982), 352-374. MR 0674981 | 
| Reference: | [8] V. Kolář J. Kratochvíl F. Leitner A. Ženíšek: Calculation of plane and Space Constructions by the Finite Element Method.(Czech). SNTL, Praha, 1979. | 
| Reference: | [9] J. Kratochvíl A. Ženíšek M. Zlámal: A simple algorithm for the stiffness matrix of triangular plate bending finite elements.Int. J. Numer. Meth. Engng. 3 (1971), 553 - 563. 10.1002/nme.1620030409 | 
| Reference: | [10] J. Nedoma: The finite element solution of parabolic equations.Apl. mat. 23 (1978), 408-438. Zbl 0427.65075, MR 0508545 | 
| Reference: | [11] S. Turčok: Solution of quasiparabolic differential equations by finite element method.(in Slovak), Thesis, Komenský University Bratislava, (1978). | 
| Reference: | [12] M. Zlámal: On the finite element method.Numer. Math. 12 (1968), 394 - 409. MR 0243753, 10.1007/BF02161362 | 
| Reference: | [13] M. Zlámal: Finite element methods for nonlinear parabolic equations.R.A.I.R.O. Numer. Anal. 11 (1977), 93-107. MR 0502073 | 
| Reference: | [14] A. Ženíšek: Curved triangular finite $C^m$-elements.Apl. Mat. 23 (1978), 346-377. MR 0502072 | 
| Reference: | [15] A. Ženíšek: Discrete forms of Friedrichs' inequalities in the finite element method.R.A.I. R. O. Numer. Anal. 15 (1981), 265-286. Zbl 0475.65072, MR 0631681 | 
| Reference: | [16] A. Ženíšek: Finite element methods for coupled thermoelasticity and coupled consolidation of clay.(To appear in R.A.I.R.O. Numer. Anal. 18 (1984).) MR 0743885 | 
| Reference: | [17] E. Godlewski A. Puech-Raoult: Équations d'évolution linéaires du second ordre et méthodes multipas.R.A.I.R.O. Numer. Anal. 13 (1979), 329-353. MR 0555383 | 
| . |