| Title:
             | 
Solvability of a first order system in three-dimensional non-smooth domains (English) | 
| Author:
             | 
Křížek, Michal | 
| Author:
             | 
Neittaanmäki, Pekka | 
| Language:
             | 
English | 
| Journal:
             | 
Aplikace matematiky | 
| ISSN:
             | 
0373-6725 | 
| Volume:
             | 
30 | 
| Issue:
             | 
4 | 
| Year:
             | 
1985 | 
| Pages:
             | 
307-315 | 
| Summary lang:
             | 
English | 
| Summary lang:
             | 
Czech | 
| Summary lang:
             | 
Russian | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
A system of first order partial differential equations is studied which is defined by the divergence and rotation operators in a bounded nonsmooth domain $\Omega\subset \bold R^3$. On the boundary $\delta\Omega$, the vanishing normal component is prescribed. A variational formulation is given and its solvability is investigated. (English) | 
| Keyword:
             | 
Friedrich’s inequality | 
| Keyword:
             | 
boundary value problem | 
| Keyword:
             | 
magnetostatics in vacuum | 
| Keyword:
             | 
bounded domain with Lipschitz boundary | 
| Keyword:
             | 
Trace theorems | 
| MSC:
             | 
35Q99 | 
| MSC:
             | 
65N10 | 
| MSC:
             | 
76A02 | 
| MSC:
             | 
78A30 | 
| idZBL:
             | 
Zbl 0593.35073 | 
| idMR:
             | 
MR0795991 | 
| DOI:
             | 
10.21136/AM.1985.104154 | 
| . | 
| Date available:
             | 
2008-05-20T18:27:58Z | 
| Last updated:
             | 
2020-07-28 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/104154 | 
| . | 
| Reference:
             | 
[1] C. Bernardi: Formulation variationnelle mixte des equations de Navier-Stokes en dimension 3.Thýese de 3ème cycle (deuxième partie), Paris VI (1979), 146-176. | 
| Reference:
             | 
[2] B. M. Budak S. V. Fomin: Multiple integrals, field theory and series.Mir Publishers, 1975. MR 0349913 | 
| Reference:
             | 
[3] E. B. Byhovskiy: Solution of a mixed problem for the system of Maxwell equations in case of ideally conductive boundary.Vestnik Leningrad. Univ. Mat. Meh. Astronom. 12 (1957), 50-66. MR 0098567 | 
| Reference:
             | 
[4] M. Crouzeix: Résolution numérique des équations de Stokes stationnaires. Approximation et méthodes iteratives de resolution d'inequations variationnelles et de problèms non lineaires.IRIA, 1974, 139-211. | 
| Reference:
             | 
[5] M. Crouzeix A. Y. Le Roux: Ecoulement d'une fluide irrotationnel.Journées Eléments Finis, Univ. de Rennes, 1976, 1 - 8. | 
| Reference:
             | 
[6] G. Duvaut J. L. Lions: Inequalities in mechanics and physics.Springer-Verlag, Berlin, 1976. MR 0521262 | 
| Reference:
             | 
[7] A. Friedman: Advanced calculus.Reinhart and Winston, Holt, New York, 1971. Zbl 0225.26002, MR 0352342 | 
| Reference:
             | 
[8] K. O. Friedrichs: Differential forms on Riemannian manifolds.Comm. Pure Appl. Math. 8 (1955), 551-590. Zbl 0066.07504, MR 0087763, 10.1002/cpa.3160080408 | 
| Reference:
             | 
[9] V. Girault P. A. Raviart: Finite element approximation of the Navier-Stokes equation.Springer-Verlag, Berlin, Heidelberg, New York, 1979. MR 0548867 | 
| Reference:
             | 
[10] M. Křížek P. Neittaanmäki: On the validity of Friedrichs' inequalities.Math. Scand. 54 (1984), 17-26. MR 0753060, 10.7146/math.scand.a-12037 | 
| Reference:
             | 
[11] M. Křížek P. Neittaanmäki: Finite element approximation for a div-rot system with mixed boundary conditions in non-smooth plane domains.Apl. Mat. 29 (1984), 272 - 285. MR 0754079 | 
| Reference:
             | 
[12] E. Moise: Geometrical topology in dimension 2 and 3.Springer-Verlag, Berlin, Heidelberg, New York, 1977. | 
| Reference:
             | 
[13] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584 | 
| Reference:
             | 
[14] J. Nečas I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies: an introduction.Elsevier, Amsterdam, Oxford, New York, 1981. MR 0600655 | 
| Reference:
             | 
[15] P. Neittaanmäki M. Křížek: Conforming FE-method for obtaining the gradient of a solution to the Poisson equation. Efficient Solvers for Elliptic Systems.(Ed. W. Hackbush), Numerical Methods in Fluid Mechanics, Vieweg, 1984, 73-86. MR 0804088 | 
| Reference:
             | 
[16] P. Neittaanmäki J. Saranen: Finite element approximation of electromagnetic fields in the three dimensional case.Numer. Funct. Anal. Optim. 2 (1981), 487-506. MR 0605756, 10.1080/01630568008816072 | 
| Reference:
             | 
[17] Neittaanmaki J. Saranen: A modified least squares FE-method for ideal fluid flow problems.J. Comput. Appl. Math. 8 (1982), 165-169. 10.1016/0771-050X(82)90038-9 | 
| Reference:
             | 
[18] R. Picard: Randwertaufgaben in der verallgemeinerten Potentialtheorie.Math. Methods Appl. Sci. 3 (1981), 218-228. Zbl 0466.31016, MR 0657293, 10.1002/mma.1670030116 | 
| Reference:
             | 
[19] R. Picard: On the boundary value problems of electro- and magnetostatics.SFB 72, preprint 442 (1981), Bonn. MR 0667134 | 
| Reference:
             | 
[20] R. Picard: An elementary proof for a compact imbedding result in the generalized electromagnetic theory.SFB 72, preprint 624 (1984), Bonn. MR 0753428 | 
| Reference:
             | 
[21] J. Saranen: On generalized harmonic fields in domains with anisotropic nonhomogeneous media.J. Math. Anal. Appl. 88 (1982), 104-115. Zbl 0508.35024, MR 0661405, 10.1016/0022-247X(82)90179-2 | 
| Reference:
             | 
[22] J. Saranen: On electric and magnetic fields in anisotropic nonhomogeneous media.J. Math. Anal. Appl. 91 (1983), 254-275. MR 0688544, 10.1016/0022-247X(83)90104-X | 
| Reference:
             | 
[23] R. Temam: Navier-Stokes Equations.North-Holland, Amsterdam 1977. Zbl 0383.35057, MR 0609732 | 
| Reference:
             | 
[24] Ch. Weber: A local compactness theorem for Maxwell's equations.Math. Methods Appl. Sci. 2 (1980), 12-25. Zbl 0432.35032, MR 0561375, 10.1002/mma.1670020103 | 
| . |