Article
MSC:
                        
34B15,
                                 
35B32,
                                 
35J65,
                                 
37G99,
                                 
58E07,
                                 
58F14,
                                 
73C50,
                                 
73H05,
                                 
73K10,
                                 
74G60,
                                 
74K20 | 
MR 0990299 | 
Zbl 0682.73036 | DOI: 
10.21136/AM.1989.104340
 
Keywords:
Fredholm operator; static equilibrium; plate of constant thickness; Fredholm map of index zero; singular point; rotationally symmetric buckled states; von Kármán plate equations; operator equation; proper Sobolev space; local bifurcation behavior; nodal properties
Summary:
This paper deals with the exact number of solutions of von Kármán equations for a rotationally symmetric buckling of a thin elastic plate. The plate of constant thickness is in static equilibrium under a uniform compressive thrust applied along its edge in the plane of the plate. The theory of M. G. Crandall, P. H. Rabinowitz [4], is used and the theory of M. S. Berger [1], [3] and M. S. Berger and P. C. Fife [2] is adapted. This work is a part of [6].
References:
                        
[2] M. S. Berger P. C. Fife: 
Von Kármán's Equations and the Buckling of a Thin Elastic Plate, II Plate with General Edge Conditions. Comm. on Pure and Appl. Math., vol. XXI, 1968, 227-241. 
MR 0229978 
[6] Ľ. Marko: Buckled States of Circular Plates. thesis, 1985 (Slovak).
[7] L. Nirenberg: 
Topics in Nonlinear Functional Analysis. Russian translation, Mir, Moscow 1977. 
MR 0488104 | 
Zbl 0426.47034 
[8] A. S. Voľmir: Elastic Plates and Shells. (Russian). GITTL, Moscow 1956.
[9] J. H. Wolkowisky: 
Existence of Buckled States of Circular Plates. Comm. on Pure and Appl. Math. vol. XX, 1967, 549-560. 
MR 0213087 | 
Zbl 0168.45206