Article
Keywords:
invariant region; vanishing viscosity; nonlinear parabolic system; quasilinear one- dimensional telegraph equation
Summary:
A parabolic system arisng as a viscosity regularization of the quasilinear one-dimensional telegraph equation is considered. The existence of $L \infty$ - a priori estimates, independent of viscosity, is shown. The results are achieved by means of generalized invariant regions.
References:
                        
[1] K. N. Chueh C. C. Conley J. A. Smoller: 
Positively invariant regions for systems of non linear diffusion equations. Indiana Univ. Math. J. 26 (1977), 372-7411. 
MR 0430536 
[4] M. Rascle: 
Un résultat de ,,compacité par compensation à coefficients variables". Application à l'élasticité nonlinéaire. Compt. Rend. Acad. Sci. Paris, Série I, 302 (1986), 311 - 314. 
MR 0838582 
[6] D. Serre: 
La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations a une dimension d'espace. J. Math. pures et appl. 65 (1986), 423 - 468. 
MR 0881690 
[7] T. D. Venttseľ: 
Estimates of solutions of the one-dimensional system of equations of gas dynamics with "viscosity" nondepending on "viscosity". Soviet Math. J., 31 (1985), 3148- --3153. 
DOI 10.1007/BF02107558 
[8] E. Feireisl: 
Compensated compactness  and time-periodic  solutions  to  non-autonomous quasilinear telegraph equations. Apl. mat. 35 (1990), 192-208. 
MR 1052740 | 
Zbl 0737.35040