[1] D. AMIR J. LINDENSTRAUSS: 
The structure of weakly compact sets in Banach spaces. Ann. of Math. 88 (1968), 35-46. 
MR 0228983[2] J. DIESTEL J. J. UHL: 
The Radon-Nikodym theorem for Banach space valued measures. to appear. 
MR 0399852[3] K. JOHN V. ZIZLER: 
Smoothness and its equivalents in weakly compactly generated Banach spaces. Journ. Funct. Anal. 15 (1974), 1-11. 
MR 0417759[4] J. LINDENSTRAUSS: 
Weakly compact sets, their topological properties and Banach spaces they generate. Ann. of Math. Stud. 69, Princeton Univ. Press (1972), 235-273. 
MR 0417761[5] J. LINDENSTRAUSS: 
Decomposition of Banach spaces. Indiana Univ. Journ. 20 (1971), 817-819. 
MR 0405074 | 
Zbl 0235.46038[6] D. PREISS P. SIMON: 
A weakly pseudocompact subspace of a Banach space is weakly compact. Comment. Math. Univ. Carolinae 15 (1974), 603-611. 
MR 0374875[7] H. P. ROSENTHAL: 
The heredity problem for weakly compactly generated Banach spaces. Comp. Math. 28 (1974), 83-111. 
MR 0417762 | 
Zbl 0298.46013[8] A. SOBCZYK: 
Projection of the space $(m)$ on its subspace $(c_0)$. Bull. Amer. Math. Soc. 47 (1941), 938-947. 
MR 0005777 | 
Zbl 0027.40801[10] S. TROJANSKI: 
On locally uniformly convex and differentiable norms in certain non-separable Banach spaces. Studia Math. 37 (1971), 173-180. 
MR 0306873[11] W. A. VEECH: 
Short proof of Sobczyk theorem. Proc. Amer. Math. Soc.  28 (1971), 627-628. 
MR 0275122