[1] ASH R. B.: 
Measure, Integration and Functional Analysis. Academic Press, New York and London 1972. 
MR 0435321 | 
Zbl 0249.28001[3] CONSTANTINESCU C., CORNE A.: 
Potential Theory on Harmonic Spaces. Springer Verlag, New York 1972. 
MR 0419799[4] FENTON P. C.: 
On sufficient conditions for harmonicity. Trans. Amer. Math, Soc. 253 (1979), 139-147. 
MR 0536939 | 
Zbl 0368.31001[5] HEATH D.: 
Functions possessing restricted mean value properties. Proc. Amer. Math. Soc 41 (1973), 588-595. 
MR 0333213 | 
Zbl 0251.31004[6] KELLOG O. D.: 
Converses of Gauss's theorem on the arithmetic mean. Trans. Amer. Math. Soc. 36 (1934), 227-242. 
MR 1501739[7] LEBESGUE H.: Sur le problème de Dirichlet. C. R. Acad. Sci. Paris 154 (1912), 335-337.
[8] LEBESGUE H.: Sur le théorème de la moyenne de Gauss. Bull. Soc. Math, France 40 (1912), 16-17.
[9] NETUKA I.: 
Harmonic functions and the mean value theorems. (in Czech), Čas. pěst. mat. 100 (1975), 391-409. 
MR 0463461[10] NETUKA I.: 
L'unicité du problème de Dirichlet généralisé pour un compact. in; Séminaire de Théorie du Potentiel Paris, No. 6, Lecture Notes in Mathematics 906, Springer Verlag, Berlin 1982, 269-281. 
MR 0663569 | 
Zbl 0481.31008[11] ØKSENDAL B., STROOCK D. W.: A characterization of harmonic measure and Markov processes whose hitting distributions are preserved by rotations. translations and dilatations (preprint).
[12] VEECH W. A.: 
A converse to the mean value theorem for harmonic functions. Amer. J. Math. 97 (1976), 1007-1027. 
MR 0393521 | 
Zbl 0324.31002[13] VESELÝ J.: 
Sequence solutions of the Dirichlet problem. Čas. pěst. mat. 106 (1981), 84-93. 
MR 0613711