[1] P. Hartman: 
On differential equations and the function $J^2_\mu + Y^2_\mu$. Amer. J. Math 83 (1961), 154-188. 
MR 0123039 | 
Zbl 0096.27001[2] P. Hartman: 
On differential equations, Volterra equations and the functions $J^2_\mu + Y^2_\mu$. Amer. J. Math 95 (1973), 552-593. 
MR 0333308[3] L. Lorch D. J. Neuman: 
On the composition of completely monotonic functions and completely monotonic sequences and related questions. J. London Math. Soc. (2), 28 (1983), 31-45. 
MR 0703462[4] L. Lorch P. Szego: 
Monotonicity of the differences of zeros of Bessel functions as a function of order. Proc. Amer. Math. Soc. 15 (1964), 91-96. 
MR 0158106[5] L. Lorch P. Szego: 
Higher monotonicity properties of certain Sturm-Liouville functions. Acta Math. 109 (1963), 55-73. 
MR 0147695[6] L. Lorch M. E. Muldoon P. Szego: 
Higher monotonicity properties of certain Sturm-Liouville functions, III. Canad. J. Math. 22 (1970), 1238-1265. 
MR 0274845[7] L. Lorch M. E. Muldoon P. Szego: 
Higher monotonicity properties of certain Sturm-Liouville functions, IV. Canad. J. Math. 24 (1972), 349-368. 
MR 0298113[8] M. E. Muldoon: 
Higher monotonicity properties of certain Sturm-Liouville functions. Proceedings of the Royal Society of Edinburgh 77A (1977), 23-37. 
MR 0445033 | 
Zbl 0361.34027[9] J. Vosmanský: 
Monotonic properties of zeros and extremants of the differential equation $y" + q(t)y = 0$. Arch. Match. (Brno) 6 (1970), 37-74. 
MR 0296420[10] J. Vosmanský: 
Certain higher monotonicity properties of i-th derivatives of solutions of $y" + a(t)y' + b(t)y = 0$. Arch. Math. (Brno) 10 (1974), 87-102. 
MR 0399578[12] Z. Došlá M. Háčik M. E. Muldoon: 
Further higher monotonicity properties of Sturm-Liouville functions. to appear. 
MR 1242631