Article
Keywords:
lower continuous lattices; strongly dually atomic lattices; semimodular and atomic lattices
Summary:
For lattices of finite length there are many characterizations of semimodularity (see, for instance, Grätzer [3] and Stern [6]–[8]). The present paper deals with some conditions characterizing semimodularity in lower continuous strongly dually atomic lattices. We give here a generalization of results of paper [7].
References:
                        
[1] Birkhoff, G.: 
Lattice Theory. 3rd edition, American Mathematical Society, Providence, RI, 1967. 
MR 0227053 | 
Zbl 0537.06001 
[2] Crawley, P., Dilworth, R. P.: Algebraic Theory of Lattices. Prentice-Hall, Englewood Cliffs (N.J.), 1973.
[3] Grätzer, G.: 
General Lattice Theory. Birhäuser Basel, 1978. 
MR 0509213 
[4] Richter, G.: 
The Kuroš-Ore Theorem, finite and infinite decompositions. Studia Sci. Math. Hungar., 17(1982), 243-250. 
MR 0761540 
[5] Stern, M.: 
Exchange properties in lattices of finite length. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 31 (1982), 15-26. 
MR 0693283 | 
Zbl 0548.06003 
[6] Stern, M.: 
Semimodularity in lattices of finite length. Discrete Math. 41 (1982), 287-293. 
MR 0676890 | 
Zbl 0655.06006 
[7] Stern, M.: 
Characterizations of semimodularity. Studia Sci. Math. Hungar. 25 (1990), 93-96. 
MR 1102200 | 
Zbl 0629.06007 
[8] Stern, M.: 
Semimodular Lattices. B. G. Teubner Verlagsgesellschaft, Stuttgart-Leipzig, 1991. 
MR 1164868 | 
Zbl 0957.06008