Article
Keywords:
prime rings; $(\sigma, \tau )$-derivations; torsion free rings and commutativity
Summary:
Let $R$ be a 2-torsion free prime ring and let $\sigma , \tau $ be automorphisms of $R$. For any $x, y \in R$, set $[x , y]_{\sigma , \tau } = x\sigma (y) - \tau (y)x$. Suppose that $d$ is a $(\sigma , \tau )$-derivation defined on $R$. In the present paper it is shown that $(i)$ if $R$ satisfies $[d(x) , x]_{\sigma , \tau } = 0$, then either $d = 0$ or $R$ is commutative $(ii)$ if $I$ is a nonzero ideal of $R$ such that $[d(x) , d(y)] = 0$, for all $x, y \in I$, and $d$ commutes with both $\sigma $ and $\tau $, then either $d = 0$ or $R$ is commutative. $(iii)$ if $I$ is a nonzero ideal of $R$ such that $d(xy) = d(yx)$, for all $x, y \in I$, and $d$ commutes with $\tau $, then $R$ is commutative. Finally a related result has been obtain for $(\sigma , \tau )$-derivation.
References:
                        
[1] Aydin N., Kaya A.: 
Some generalization in prime rings with $(\sigma , \tau )$-derivation. Doga Turk. J. Math. 16 (1992), 169–176.  
MR 1202970 
[2] Bell H. E., Martindale W. S.: 
Centralizing mappings of semiprime rings. Canad. Math. Bull. 30 (1987), 92–101.  
MR 0879877 | 
Zbl 0614.16026 
[3] Bell H. E., Kappe L. C.: 
Ring in which derivations satisfy certain algebric conditions. Acta Math. Hungar. 53 (1989), 339–346.  
MR 1014917 
[4] Bell H. E., Daif M. N.: 
On commutativity and strong commutativity preserving maps. Canad. Math. Bull. 37 (1994), 443–447.  
MR 1303669 | 
Zbl 0820.16031 
[5] Bell H. E., Daif M. N.: 
On derivations and commutativity in prime rings. Acta Math. Hungar. 66 (1995), 337–343.  
MR 1314011 | 
Zbl 0822.16033 
[6] Bresar M.: 
On a generalization of the notion of centralizing mappings. Proc. Amer. Math. Soc. 114 (1992), 641–649.  
MR 1072330 | 
Zbl 0754.16020 
[7] Bresar M.: 
Centralizing mappings and derivations in prime rings. J. Algebra 156 (1993), 385–394.  
MR 1216475 | 
Zbl 0773.16017 
[8] Daif M. N., Bell H. E.: 
Remarks on derivations on semiprime rings. Int. J. Math. Math. Sci. 15 (1992), 205–206.  
MR 1143947 | 
Zbl 0746.16029 
[11] Posner E. C.: 
Derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093–1100.  
MR 0095863 
[12] Vukman J.: 
Commuting and centralizing mappings in prime rings. Proc. Amer. Math. Soc. 109 (1990), 47–52.  
MR 1007517 | 
Zbl 0697.16035 
[13] Vukman J.: 
Derivations on semiprime rings. Bull. Austral. Math. Soc. 53 (1995), 353–359.   
MR 1388583