| Title: | On $(\sigma,\tau)$-derivations in prime rings (English) | 
| Author: | Ashraf, Mohammad | 
| Author: | Nadeem-ur-Rehman | 
| Language: | English | 
| Journal: | Archivum Mathematicum | 
| ISSN: | 0044-8753 (print) | 
| ISSN: | 1212-5059 (online) | 
| Volume: | 38 | 
| Issue: | 4 | 
| Year: | 2002 | 
| Pages: | 259-264 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $R$ be a 2-torsion free prime ring and let $\sigma , \tau $ be automorphisms of $R$. For any $x, y \in R$, set $[x , y]_{\sigma , \tau } = x\sigma (y) - \tau (y)x$. Suppose that $d$ is a $(\sigma , \tau )$-derivation defined on $R$. In the present paper it is shown that $(i)$ if $R$ satisfies $[d(x) , x]_{\sigma , \tau } = 0$, then either $d = 0$ or $R$ is commutative $(ii)$ if $I$ is a nonzero ideal of $R$ such that $[d(x) , d(y)] = 0$, for all $x, y \in I$, and $d$ commutes with both $\sigma $ and $\tau $, then either $d = 0$ or $R$ is commutative. $(iii)$ if $I$ is a nonzero ideal of $R$ such that $d(xy) = d(yx)$, for all $x, y \in I$, and $d$ commutes with $\tau $, then $R$ is commutative. Finally a related result has been obtain for $(\sigma , \tau )$-derivation. (English) | 
| Keyword: | prime rings | 
| Keyword: | $(\sigma, \tau )$-derivations | 
| Keyword: | torsion free rings and commutativity | 
| MSC: | 16N60 | 
| MSC: | 16U70 | 
| MSC: | 16U80 | 
| MSC: | 16W25 | 
| idZBL: | Zbl 1068.16047 | 
| idMR: | MR1942655 | 
| . | 
| Date available: | 2008-06-06T22:30:51Z | 
| Last updated: | 2012-05-10 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/107839 | 
| . | 
| Reference: | [1] Aydin N., Kaya A.: Some generalization in prime rings with $(\sigma , \tau )$-derivation.Doga Turk. J. Math. 16 (1992), 169–176.  MR 1202970 | 
| Reference: | [2] Bell H. E., Martindale W. S.: Centralizing mappings of semiprime rings.Canad. Math. Bull. 30 (1987), 92–101.  Zbl 0614.16026, MR 0879877 | 
| Reference: | [3] Bell H. E., Kappe L. C.: Ring in which derivations satisfy certain algebric conditions.Acta Math. Hungar. 53 (1989), 339–346.  MR 1014917 | 
| Reference: | [4] Bell H. E., Daif M. N.: On commutativity and strong commutativity preserving maps.Canad. Math. Bull. 37 (1994), 443–447.  Zbl 0820.16031, MR 1303669 | 
| Reference: | [5] Bell H. E., Daif M. N.: On derivations and commutativity in prime rings.Acta Math. Hungar. 66 (1995), 337–343.  Zbl 0822.16033, MR 1314011 | 
| Reference: | [6] Bresar M.: On a generalization of the notion of centralizing mappings.Proc. Amer. Math. Soc. 114 (1992), 641–649.  Zbl 0754.16020, MR 1072330 | 
| Reference: | [7] Bresar M.: Centralizing mappings and derivations in prime rings.J. Algebra 156 (1993), 385–394.  Zbl 0773.16017, MR 1216475 | 
| Reference: | [8] Daif M. N., Bell H. E.: Remarks on derivations on semiprime rings.Int. J. Math. Math. Sci. 15 (1992), 205–206.  Zbl 0746.16029, MR 1143947 | 
| Reference: | [9] Herstein I. N.: A note on derivations.Canad. Math. Bull. 21 (1978), 369–370.  Zbl 0412.16018, MR 0506447 | 
| Reference: | [10] Herstein I. N.: Rings with involution.Univ. Chicago Press, Chicago 1976.  Zbl 0343.16011, MR 0442017 | 
| Reference: | [11] Posner E. C.: Derivations in prime rings.Proc. Amer. Math. Soc. 8 (1957), 1093–1100.  MR 0095863 | 
| Reference: | [12] Vukman J.: Commuting and centralizing mappings in prime rings.Proc. Amer. Math. Soc. 109 (1990), 47–52.  Zbl 0697.16035, MR 1007517 | 
| Reference: | [13] Vukman J.: Derivations on semiprime rings.Bull. Austral. Math. Soc. 53 (1995), 353–359.   MR 1388583 | 
| . |