Previous |  Up |  Next


Title: On the convergence of the Ishikawa iterates to a common fixed point of two mappings (English)
Author: Ćirić, Lj. B.
Author: Ume, J. S.
Author: Khan, M. S.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 39
Issue: 2
Year: 2003
Pages: 123-127
Summary lang: English
Category: math
Summary: Let $C$ be a convex subset of a complete convex metric space $X$, and $S$ and $T$ be two selfmappings on $C$. In this paper it is shown that if the sequence of Ishikawa iterations associated with $S$ and $T$ converges, then its limit point is the common fixed point of $S$ and $T$. This result extends and generalizes the corresponding results of Naimpally and Singh [6], Rhoades [7] and Hicks and Kubicek [3]. (English)
Keyword: Ishikawa iterates
Keyword: comon fixed point
Keyword: convex metric space
MSC: 47H10
MSC: 47J25
MSC: 54H25
idZBL: Zbl 1109.47312
idMR: MR1994568
Date available: 2008-06-06T22:41:26Z
Last updated: 2012-05-10
Stable URL:
Reference: [1] Ćirić, Lj. B.: A generalization of Banach’s contraction principle.Proc. Amer. Math. Soc. 45 (1974), 267–273. MR 0356011
Reference: [2] Ćirić, Lj. B.: Quasi-contractions in Banach spaces.Publ. Inst. Math. 21 (1977), 41–48. MR 0461224
Reference: [3] Hichs, L. and Kubicek, J. D.: On the Mann iteration process in Hilbert spaces.J. Math. Anal. Appl. 59 (1977), 498–504. MR 0513062
Reference: [4] Ishikawa, S.: Fixed points by a new iteration method.Proc. Amer. Math. Soc. 44 (1974), 147–150. Zbl 0286.47036, MR 0336469
Reference: [5] Mann, W. R.: Mean value methods in iteration,.Proc. Amer. Math. Soc. 4 (1953), 506–510. Zbl 0050.11603, MR 0054846
Reference: [6] Naimpally, S. A. and Singh, K. L.: Extensions of some fixed point theorems of Rhoades.J. Math. Anal. Appl. 96 (1983), 437–446. MR 0719327
Reference: [7] Rhoades, B. E.: Fixed point iterations using infinite matrices.Trans. Amer. Math. Soc. 196 (1974), 161–176. Zbl 0422.90089, MR 0348565
Reference: [8] Rhoades, B. E.: A comparison of various definitions of contractive mappings.Trans. Amer. Math. Soc. 226 (1977), 257–290. Zbl 0394.54026, MR 0433430
Reference: [9] Rhoades, B. E.: Extension of some fixed point theorems of Ćirić, Maiti and Pal.Math. Sem. Notes Kobe Univ. 6 (1978), 41–46. MR 0494051
Reference: [10] Rhoades, B. E.: Comments on two fixed point iteration methods.J. Math. Anal. Appl. 56 (1976), 741–750. Zbl 0353.47029, MR 0430880
Reference: [11] Singh, K. L.: Fixed point iteration using infinite matrices.In “Applied Nonlinear Analysis” (V. Lakshmikantham, Ed.), pp.689–703, Academic Press, New York, 1979. MR 0537576
Reference: [12] Singh, K. L.: Generalized contractions and the sequence of iterates.In “Nonlinear Equations in Abstract Spaces” (V. Lakshmikantham, Ed.), pp. 439–462, Academic Press, New York, 1978. MR 0502557
Reference: [13] Takahashi, W.: A convexity in metric spaces and nonexpansive mappings.Kodai Math. Sem. Rep. 22 (1970), 142–149. MR 0267565


Files Size Format View
ArchMathRetro_039-2003-2_3.pdf 175.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo