Article
Keywords:
conformally flat manifolds; semi-symmetric spaces
Summary:
We obtain the complete classification of conformally flat semi-symmetric spaces.
References:
                        
[BC] Boeckx E., Calvaruso G.: 
When is the unit tangent sphere bundle semi-symmetric?. preprint 2002.  
MR 2075771 | 
Zbl 1076.53032[BKV] Boeckx E., Kowalski O., and Vanhecke L.: 
Riemannian manifolds of conullity two. World Scientific 1996.  
MR 1462887[CV] Calvaruso G., Vanhecke L.: 
Semi-symmetric ball-homogeneous spaces and a volume conjecture. Bull. Austral. Math. Soc. 57 (1998), 109–115.  
MR 1623824 | 
Zbl 0903.53031[HSk] Hashimoto N., Sekizawa M.: 
Three-dimensional conformally flat pseudo-symmetric spaces of constant type. Arch. Math. (Brno) 36 (2000), 279–286.  
MR 1811172 | 
Zbl 1054.53060[K] Kurita M.: 
On the holonomy group of the conformally flat Riemannian manifold. Nagoya Math. J. 9 (1975), 161–171.  
MR 0074050[R] Ryan P.: 
A note on conformally flat spaces with constant scalar curvature. Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., Dalhousie Univ. Halifax 1971, 2 (1972), 115–124.  
MR 0487882[S] Szabó Y. I.: 
Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$. I, the local version, J. Differential Geom. 17 (1982), 531–582.  
MR 0683165[T] Takagi H.: 
An example of Riemannian manifold satisfying $R(X,Y) \cdot R$ but not $\nabla R =0$. Tôhoku Math. J. 24 (1972), 105–108.   
MR 0319109