[1] Bochner S., Montgomery D.: 
Locally compact groups of differentiable transformations. Ann. of Math. (2) 47 (1946), 639–653.  
MR 0018187 | 
Zbl 0061.04407[2] Bourbaki N.: 
Topologie générale, Chap. 1-4. Hermann, Paris 1971.  
MR 0358652[3] Bredon G. E., Raymond F., Williams R. F.: 
$p$-Adic transformation groups. Trans. Amer. Math. Soc. 99 (1961), 488–498.  
MR 0142682[6] Federer H.: 
Geometric measure theory. Springer-Verlag, Berlin–Heidelberg–New York, N.Y., 1969.  
MR 0257325 | 
Zbl 0176.00801[7] Hofmann K. H., Morris S. A.: 
The structure of compact groups. de Gruyter Stud. Math. 25 (1998).  
MR 1646190 | 
Zbl 0919.22001[8] Karube T.: 
Transformation groups satisfying some local metric conditions. J. Math. Soc. Japan 18, No. 1 (1966), 45–50.  
MR 0188342 | 
Zbl 0136.43801[9] Kuranishi M.: 
On conditions of differentiability of locally compact groups. Nagoya Math. J. 1 (1950), 71–81.  
MR 0038355 | 
Zbl 0037.30502[11] Montgomery D.: 
Finite dimensionality of certain transformation groups. Illinois J. Math. 1 (1957), 28–35.  
MR 0083680 | 
Zbl 0077.36702[12] Montgomery D., Zippin L.: 
Topological transformation groups. Interscience Publishers, New York, 1955.  
MR 0073104 | 
Zbl 0068.01904[13] Nagami K. R.: 
Mappings of finite order and dimension theory. Japan J. Math. 30 (1960), 25–54.  
MR 0142101 | 
Zbl 0106.16002[14] Nagami K. R.: 
Dimension-theoretical structure of locally compact groups. J. Math. Soc. Japan 14, No. 4 (1962), 379–396.  
MR 0142679 | 
Zbl 0118.27001[16] Nagata J.: 
Modern dimension theory. Sigma Ser. Pure Math. 2 (1983).  
Zbl 0518.54002[17] Repovš D., Ščepin E. V.: 
A proof of the Hilbert-Smith conjecture for actions by Lipschitz maps. Math. Ann. 308 (1997), 361–364.  
MR 1464908 | 
Zbl 0879.57025