| Title: | On locally Lipschitz locally compact transformation groups of manifolds (English) | 
| Author: | George Michael, A. A. | 
| Language: | English | 
| Journal: | Archivum Mathematicum | 
| ISSN: | 0044-8753 (print) | 
| ISSN: | 1212-5059 (online) | 
| Volume: | 43 | 
| Issue: | 3 | 
| Year: | 2007 | 
| Pages: | 159-162 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | In this paper we show that a “locally Lipschitz” locally compact transformation group acting continuously and effectively on a connected paracompact locally Euclidean topological manifold is a Lie group. This is a contribution to the proof of the Hilbert-Smith conjecture. It generalizes the classical Bochner-Montgomery-Kuranishi Theorem[1, 9] and also the Repovš-Ščepin Theorem [17] which holds only for Riemannian manifolds. (English) | 
| Keyword: | locally Lipschitz transformation group | 
| Keyword: | Hilbert-Smith conjecture | 
| MSC: | 57S05 | 
| idZBL: | Zbl 1164.57014 | 
| idMR: | MR2354804 | 
| . | 
| Date available: | 2008-06-06T22:50:59Z | 
| Last updated: | 2012-05-10 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/108061 | 
| . | 
| Reference: | [1] Bochner S., Montgomery D.: Locally compact groups of differentiable transformations.Ann. of Math. (2) 47 (1946), 639–653.  Zbl 0061.04407, MR 0018187 | 
| Reference: | [2] Bourbaki N.: Topologie générale, Chap. 1-4.Hermann, Paris 1971.  MR 0358652 | 
| Reference: | [3] Bredon G. E., Raymond F., Williams R. F.: $p$-Adic transformation groups.Trans. Amer. Math. Soc. 99 (1961), 488–498.  MR 0142682 | 
| Reference: | [4] Dieudonne J.: Foundations of modern analysis.Academic Press, New York–London 1960.  Zbl 0100.04201, MR 0120319 | 
| Reference: | [5] Dress A.: Newman’s theorems on transformation groups.Topology, 8 (1969), 203–207.  Zbl 0176.53201, MR 0238353 | 
| Reference: | [6] Federer H.: Geometric measure theory.Springer-Verlag, Berlin–Heidelberg–New York, N.Y., 1969.  Zbl 0176.00801, MR 0257325 | 
| Reference: | [7] Hofmann K. H., Morris S. A.: The structure of compact groups.de Gruyter Stud. Math. 25 (1998).  Zbl 0919.22001, MR 1646190 | 
| Reference: | [8] Karube T.: Transformation groups satisfying some local metric conditions.J. Math. Soc. Japan 18, No. 1 (1966), 45–50.  Zbl 0136.43801, MR 0188342 | 
| Reference: | [9] Kuranishi M.: On conditions of differentiability of locally compact groups.Nagoya Math. J. 1 (1950), 71–81.  Zbl 0037.30502, MR 0038355 | 
| Reference: | [10] Michael G.: On the smoothing problem.Tsukuba J. Math. 25, No. 1 (2001), 13–45.  Zbl 0988.57014, MR 1846867 | 
| Reference: | [11] Montgomery D.: Finite dimensionality of certain transformation groups.Illinois J. Math. 1 (1957), 28–35.  Zbl 0077.36702, MR 0083680 | 
| Reference: | [12] Montgomery D., Zippin L.: Topological transformation groups.Interscience Publishers, New York, 1955.  Zbl 0068.01904, MR 0073104 | 
| Reference: | [13] Nagami K. R.: Mappings of finite order and dimension theory.Japan J. Math. 30 (1960), 25–54.  Zbl 0106.16002, MR 0142101 | 
| Reference: | [14] Nagami K. R.: Dimension-theoretical structure of locally compact groups.J. Math. Soc. Japan 14, No. 4 (1962), 379–396.  Zbl 0118.27001, MR 0142679 | 
| Reference: | [15] Nagami K. R.: Dimension theory.Academic Press, New York, 1970.  Zbl 0224.54060, MR 0271918 | 
| Reference: | [16] Nagata J.: Modern dimension theory.Sigma Ser. Pure Math. 2 (1983).  Zbl 0518.54002 | 
| Reference: | [17] Repovš D., Ščepin E. V.: A proof of the Hilbert-Smith conjecture for actions by Lipschitz maps.Math. Ann. 308 (1997), 361–364.  Zbl 0879.57025, MR 1464908 | 
| Reference: | [18] Yang C. T.: p-adic transformation groups.Michigan Math. J. 7 (1960), 201–218.   Zbl 0094.17502, MR 0120310 | 
| . |