Article
Keywords:
locally convex space; orthogonality space; Hahn--Banach extension property
Summary:
In this paper, we investigate the existence and characterizations of locally convex topologies in a linear orthogonality space.
References:
                        
[1] Kąkol J.: 
Basic sequences and non locally convex topological vector spaces. Rend. Circ. Mat. Palermo (2) 36 (1987), 95-102. 
MR 0944650[2] Kalton N.J., Peck N.T., Roberts J.W.: 
An F-space sampler. vol. 89 of London Mathematical Society Lecture Note Series, Cambridge University Press, 1984. 
MR 0808777 | 
Zbl 0556.46002[4] Piziak R.: 
Sesquilinear forms in infinite dimensions. Pacific J. Math. 43 (2) (1972), 475-481. 
MR 0318850 | 
Zbl 0237.46007[5] Sorjonen P.: 
Lattice-theoretical characterizations of inner product spaces. Studia Sci. Math. Hungarica 19 (1984), 141-149. 
MR 0787796 | 
Zbl 0588.46019[6] Sorjonen P.: 
Hahn-Banach extension properties in linear orthogonality spaces. Funct. Approximatio, Comment. Math., to appear. 
MR 1201711 | 
Zbl 0793.46007[7] Wilbur W.J.: 
Quantum logic and the locally convex spaces. Trans. Amer. Math. Soc. 207 (1975), 343-360. 
MR 0367607 | 
Zbl 0289.46019