Article
Keywords:
graph product; chromatic number; antichain
Summary:
We show that the minimum chromatic number of a product of two $n$-chromatic graphs is either bounded by 9, or tends to infinity. The result is obtained by the study of coloring iterated adjoints of a digraph by iterated antichains of a poset.
References:
                        
[D] Dilworth R.P.: 
Some combinatorial problems on partially ordered sets. Combinatorial Analysis, R. Bellman and M. Halls (eds.), Proc. Symp. Appl. Math., Amer. Math. Soc., Providence, 1960, 85-90. 
MR 0115940 | 
Zbl 0096.00601[DSW] Duffus D., Sands B., Woodrow R.: 
On the chromatic number of the product of graphs. J. Graph Theory 9 (1985), 487-495. 
MR 0890239 | 
Zbl 0664.05019[ES] El-Zahar M, Sauer N.: 
The chromatic number of the product of two four-chromatic graphs is four. Combinatorica 5 (1985), 121-126. 
MR 0815577[H] Hedetniemi S.: Homomorphisms of graphs and automata. University of Michigan Technical Report 03105-44-T, 1966.
[HE] Harner C.C., Entringer R.C.: 
Arc coloring of digraphs. J. Combinatorial Theory Ser. B 13 (1972), 219-225. 
MR 0313101[HHMN] Häggkvist R., Hell P., Miller D.J., Neumann Lara V.: 
On the multiplicative graphs and the product conjecture. Combinatorica 8 (1988), 63-74. 
MR 0951994[PR] Poljak S., Rödl V.: 
On the arc chromatic number of a digraph. J. Combinatorial Theory Ser. B 31 (1981), 190-198. 
MR 0630982[T] Turzík D.: 
A note on chromatic number of direct product of graphs. Comment. Math. Univ. Carolinae 24 (1983), 461-463. 
MR 0730141