Article
Keywords:
symmetric graph; tensor product
Summary:
In the category of symmetric graphs there are exactly five closed tensor products. If we omit the requirement of units, we obtain twelve more.
References:
                        
[1] Eilenberg S., Kelly G.M.: 
Closed categories. Proc. of the Conference on Categorical Algebra, La Jolla 1965, Springer Verlag (1966), 421-562. 
MR 0225841 | 
Zbl 0192.10604[3] Kelly G.M., Mac Lane S.: 
Coherence in closed categories. J. of Pure and Appl. Algebra 1 (1971), 97-140. 
MR 0283045 | 
Zbl 0215.09703[4] Mac Lane S.: 
Categories for the working mathematician. Grad. Texts in Math. 5, Springer 1971. 
MR 0354798 | 
Zbl 0906.18001[5] Mac Lane S.: 
Natural associativity and commutativity. Rice University Studies 49 (1963), 28-46. 
MR 0170925[6] Pultr A.: 
Extending tensor products to structures of closed categories. Comment. Math. Univ. Carolinae 13 (1972), 599-616. 
MR 0318263 | 
Zbl 0254.18008[7] Pultr A.: 
Tensor products in the category of graphs. Comment. Math. Univ. Carolinae 11 (1970), 619-639. 
MR 0387373 | 
Zbl 0214.51102[8] Pultr A.: 
Tensor products on the category of graphs. Combinat. Struct. Appl., Proc. Calgary Internat. Conf. Combinat. Struct. Appl., Calgary 1969, 327-329 (1970). 
Zbl 0245.05123