Article
Keywords:
envelope of holomorphy; integral formula; index; null-convexity; complex null cone; Lipschitz boundary
Summary:
Analytic continuation and domains of holomorphy for solution to the complex Laplace and Dirac equations in $\bold C^n$ are studied. First, geometric description of envelopes of holomorphy over domains in $\bold E^n$ is given. In more general case, solutions can be continued by integral formulas using values on a real $n-1$ dimensional cycle in $\bold C^n$. Sufficient conditions for this being possible are formulated.
References:
                        
[1] Brackx F., Delanghe R., Sommen R.: 
Clifford Analysis. Research Notes in Mathematics No.76, Pitman 1982. 
Zbl 1058.30043[2] Bureš M., Souček V.: 
Generalized hypercomplex analysis and its integral formulas. Complex Variables: Theory and Application 5 (1985), 53-70. 
MR 0822855[3] Dodson M., Souček V.: 
Leray residues applied to the solution of the Laplace and Wave equations. Seminari di geometria, Bologna (1984), 93-107. 
MR 0866151[4] Ryan J.: 
Cells of harmonicity and generalized Cauchy integral formula. Proc. London Math. Society (3) 60 (1990), 295-318. 
MR 1031455[5] Siciak J.: 
Holomorphic continuation of harmonic functions. Ann. Polon. Math. 29 (1974), 67-73. 
MR 0352530 | 
Zbl 0247.32011