Article
Keywords:
zero-dimensionality; covering dimension; inductive dimension; subgroup; locally compact group
Summary:
Improving the recent result of the author we show that $\operatorname{ind}H=0$ is equivalent to $\operatorname{dim} H=0$ for every subgroup $H$ of a Hausdorff locally compact group $G$.
References:
                        
[2] Hewitt E., Ross K.A.: 
Abstract Harmonic Analysis, vol. 1. Structure of Topological Groups. Integration Theory. Group Representations. Die Grundlehren der mathematischen Wissenshaften, Bd. 115, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. 
MR 0156915 | 
Zbl 0416.43001[3] Shakhmatov D.B.: 
Imbeddings into topological groups preserving dimensions. Topology Appl. 36 (1990), 181-204. 
MR 1068169 | 
Zbl 0709.22001[4] Tkačenko M.G.: 
Factorization theorems for topological groups and their applications. Topology Appl. 38 (1991), 21-37. 
MR 1093863