Article
Keywords:
Banach algebra; joint spectrum; subspectrum; spectroid; geometrical spectral radius; (joint) capacity
Summary:
The aim of this paper is to characterize a class of subspectra for which the geometric spectral radius is the same and depends only upon a commuting $n$-tuple of elements of a complex Banach algebra. We prove also that all these subspectra have the same capacity.
References:
                        
[1] Chō M., Takaguchi M.: 
Boundary points of joint numerical ranges. Pacific J. Math. 95 (1981), 27-35. 
MR 0631656[2] Chō M., Żelazko W.: 
On geometric spectral radius of commuting $n$-tuples of operators. to appear in Hokkaido Math. J. 
MR 1169792[3] Słodkowski Z., Żelazko W.: 
A note on semicharacters. in: Banach Center Publications, vol. 8, Spectral Theory, PWN, Warsaw, 1982, 397-402. 
MR 0738305[4] Sołtysiak A.: 
Capacity of finite systems of elements in Banach algebras. Comment. Math. 19 (1977), 381-387. 
MR 0477779[5] Sołtysiak A.: 
Some remarks on the joint capacities in Banach algebras. ibid. 20 (1978), 197-204. 
MR 0463939[6] Stirling D.S.G.: 
The joint capacity of elements of Banach algebras. J. London Math. Soc. (2), 10 (1975), 212-218. 
MR 0370195 | 
Zbl 0302.46035[7] Żelazko W.: 
An axiomatic approach to joint spectra I. Studia Math. 64 (1979), 249-261. 
MR 0544729[8] Żelazko W.: 
Banach Algebras. Elsevier, PWN, Amsterdam, Warsaw, 1973. 
MR 0448079