[1] Agmon S.: 
On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Commun. Pure Appl. Math. 15 (1962), 119-147. 
MR 0147774 | 
Zbl 0109.32701[2] Agmon S., Douglis A., Nirenberg L.: 
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Commun. Pure Appl. Math. 12 (1959), 623-727; II, ibid. 17 (1964), 35-92. 
MR 0125307 | 
Zbl 0093.10401[3] Andrews G.: 
On the existence of solutions to the equation: $u_{tt} = u_{xxt} + \sigma(u_x)_x$. J. Diff. Eqns. 35 (1980), 200-231. 
MR 0561978 | 
Zbl 0415.35018[4] Andrews G., Ball J.M.: 
Asymptotic behaviour and changes in phase in one-dimensional nonlinear viscoelasticity. J. Diff. Eqns. 44 (1982), 306-341. 
MR 0657784[5] Ang D.D., Dinh A.P.N.: 
On the strongly damped wave equation: $u_{tt} - \Delta u - \Delta u_t + f(u) = 0$. SIAM J. Math. Anal. 19 (1988), 1409-1418. 
MR 0965260[6] Aviles P., Sandefur J.: 
Nonlinear second order equations with applications to partial differential equations. J. Diff. Eqns. 58 (1985), 404-427. 
MR 0797319 | 
Zbl 0572.34004[7] Bardos C., Lebeau G., Rauch J: 
Contrôle et stabilisation dans les problèmes hyperboliques. Appendix II in J.L. Lions Contrôlabilité exacte, perturbations et stabilisation de systémes distribués, I, Contrôlabilité exacte Masson, RMA 8, 1988. 
MR 0953547[8] Bardos C., Lebeau G., Rauch J: 
Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. submitted to SIAM. J. Cont. Optim. 
Zbl 0786.93009[9] Chen G.: 
Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain. J. Math. pures et appl. 58 (1976), 249-273. 
MR 0544253[10] Chrzȩszczyk A.: 
Some existence results in dynamical thermoelasticity. Part I. Nonlinear Case. Arch. Mech. 39 (1987), 605-617. 
MR 0976929[11] Cleménts J.: 
Existence theorems for a quasilinear evolution equation. SIAM J. Appl. Math. 26 (1974), 745-752. 
MR 0372426[12] Cleménts J.: 
On the existence and uniqueness of solutions of the equation $u_{tt} - (\partial/\partial x_i)\sigma_i(u_{x_i}) - \Delta_Nu_t = f$. Canad. Math. Bull. 18 (1975), 181-187. 
MR 0397200[13] Dafermos C.M.: 
On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch. Rational Mech. Anal. 29 (1968), 241-271. 
MR 0233539 | 
Zbl 0183.37701[14] Dafermos C.M.: 
The mixed initial-boundary value problem for the equations of non-linear one-dimensional visco-elasticity. J. Diff. Eqns. 6 (l969), 71-86. 
MR 0241831[15] Dafermos C.M., Hsiao L.: 
Development of singularities in solutions of the equations of nonlinear thermoelasticity. Quart. Appl. Math. 44 (1986), 463-474. 
MR 0860899 | 
Zbl 0661.35009[16] Dan W.: 
On a local in time solvability of the Neumann problem of quasilinear hyperbolic parabolic coupled systems. preprint, 1992. 
MR 1357364 | 
Zbl 0841.35003[17] Dassios G., Grillakis M.: 
Dissipation rates and partition of energy in thermoelasticity. Arch. Rational Mech. Anal. 87 (1984), 49-91. 
MR 0760319 | 
Zbl 0563.73007[18] Ebihara Y.: 
On some nonlinear evolution equations with the strong dissipation. J. Diff. Eqns. 30 (1978), 149-164 II ibid. 34 (1979), 339-352 III ibid. 45 (1982), 332-355. 
MR 0513267[19] Ebihara Y.: 
Some evolution equations with the quasi-linear strong dissipation. J. Math. pures et appl. 58 (1987), 229-245. 
MR 0539221[20] Engler H.: 
Strong solutions for strongly damped quasilinear wave equations. Contemporary Math. 64 (1987), 219-237. 
MR 0881465 | 
Zbl 0638.35054[21] Feireisl E.: 
Forced vibrations in one-dimensional nonlinear thermoelasticity as a local coercive-like problem. Comment. Math. Univ. Carolinae 31 (1990), 243-255. 
MR 1077895 | 
Zbl 0718.73013[22] Friedman A., Nečas J.: 
Systems of nonlinear wave equations with nonlinear viscosity. Pacific J. Math. 135 (1988), 29-55. 
MR 0965683[23] Greenberg J.M.: 
On the existence, uniqueness, and stability of the equation $\rho_0X_{tt} = E(X_x)X_{xx} + X_{xxt}$. J. Math. Anal. Appl. 25 (1969), 575-591. 
MR 0240473[24] Greenberg J.M., Li Ta-tsien: 
The effect of boundary damping for the quasilinear wave equation. J. Diff. Eqns. 52 (1984), 66-75. 
MR 0737964[25] Greenberg J.M., MacCamy R.C., Mizel J.J.: On the existence, uniqueness, and stability of the equation $\sigma^{\prime} (u_x)u_{xx} - \lambda u_{xxt} = \rho_0u_{tt}$. J. Math. Mech. 17 (1968), 707-728.
[26] Godin P.: Private communication in 1992. 
[27] Hrusa W.J., Messaoudi S.A.: 
On formation of singularities in one-dimensional nonlinear thermoelasticity. Arch. Rational Mech. Anal. 111 (1990), 135-151. 
MR 1057652 | 
Zbl 0712.73023[28] Hrusa W.J., Tarabek M.A.: 
On smooth solutions of the Cauchy problem in one-dimensional nonlinear thermoelasticity. Quart. Appl. Math. 47 (1989), 631-644. 
MR 1031681 | 
Zbl 0692.73005[29] Jiang S.: 
Global existence of smooth solutions in one- dimensional nonlinear thermoelasticity. Proc. Roy. Soc. Edinburgh 115A (1990), 257-274. 
MR 1069521 | 
Zbl 0723.35044[30] Jiang S.: 
Far field behavior of solutions to the equations of nonlinear 1-d-thermoelasticity. Appl. Anal. 36 (1990), 25-35. 
MR 1040876 | 
Zbl 0672.35011[31] Jiang S.: 
Rapidly decreasing behaviour of solutions in nonlinear 3-D-thermo-elasticity. Bull. Austral. Math. Soc. 43 (1991), 89-99. 
MR 1086721[32] Jiang S.: Global solutions of the Dirichlet problem in one-dimensional nonlinear thermoelasticity. SFB 256 Preprint 138, Universität Bonn, 1990.
[33] Jiang S.: 
Global solutions of the Neumann problem in one-dimensional nonlinear thermoelasticity. to appear in Nonlinear TMA. 
MR 1174462 | 
Zbl 0786.73009[34] Jiang S., Racke R.: 
On some quasilinear hyperbolic-parabolic initial boundary value problems. Math. Meth. Appl. Sci. 12 (1990), 315-339. 
MR 1048561 | 
Zbl 0706.35098[35] Kawashima S.: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Thesis, Kyoto University, 1983.
[36] Kawashima S., Okada M.: 
Smooth global solutions for the one-dimensional equations in magnetohydrodynamics. Proc. Japan Acad. Ser. A. 53 (1982), 384-387. 
MR 0694940 | 
Zbl 0522.76098[37] Kawashima S., Shibata Y.: 
Global existence and exponential stability of small solutions to nonlinear viscoelasticity. to appear in Commun. Math. Phys. 
MR 1178142 | 
Zbl 0779.35066[38] Kawashima S., Shibata Y.: 
On the Neumann problem of one-dimensional nonlinear thermoelasticity with time- independent external forces. preprint, 1992. 
MR 1314530[39] Klainerman S., Majda A.: 
Formation of singularities for wave equations including the nonlinear vibrating string. Pure Appl. Math. 33 (1980), 241-263. 
MR 0562736 | 
Zbl 0443.35040[40] Kobayashi T., Pecher H., Shibata Y.: 
On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity. preprint, 1992. 
MR 1219900 | 
Zbl 0788.35001[41] Lagnese J.: 
Boundary stabilization of linear elastodynamic systems. SIAM J. Control Optim. 21 (1983), 968-984. 
MR 0719524 | 
Zbl 0531.93044[42] MacCamy R.C., Mizel V.J.: 
Existence and nonexistence in the large of solutions of quasilinear wave equations. Arch. Rational Mech. Anal. 25 (1967), 299-320. 
MR 0216165 | 
Zbl 0146.33801[43] Matsumura A.: 
Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equations with first order dissipation. Publ. RIMS Kyoto Univ. Ser. A 13 (1977), 349-379. 
MR 0470507[44] Mizohata K., Ukai S.: 
The global existence of small amplitude solutions to the nonlinear acoustic wave equation. preprint, 1991, Dep. of Information Sci. Tokyo Inst. of Tech. 
MR 1231754 | 
Zbl 0794.35108[45] Nagasawa T.: 
On the one-dimensional motion of the polytropic ideal gas non-fixed on the boundary. J. Diff. Eqns. 65 (1986), 49-67. 
MR 0859472 | 
Zbl 0598.34021[46] Pecher H.: 
On global regular solutions of third order partial differential equations. J. Math. Anal. Appl. 73 (1980), 278-299. 
MR 0560948 | 
Zbl 0429.35057[47] Ponce G.: 
Global existence of small solutions to a class of nonlinear evolution equation. Nonlinear Anal. TMA 9 (1985), 399-418. 
MR 0785713[48] Ponce G., Racke R.: 
Global existence of small solutions to the initial value problem for nonlinear thermoelasticity. J. Diff. Eqns. 87 (1990), 70-83. 
MR 1070028 | 
Zbl 0725.35065[49] Potier-Ferry M.: 
On the mathematical foundation of elastic stability, I. Arch. Rational Mech. Anal. 78 (1982), 55-72. 
MR 0654552[50] Qin T.: 
The global smooth solutions of second order quasilinear hyperbolic equations with dissipation boundary condition. Chinese Anals Math. 9B (1988), 251-269. 
MR 0968461[51] Quinn J.P., Russell D.L.: 
Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping. Proc. Roy. Soc. Edinburgh 77A (1977), 97-127. 
MR 0473539 | 
Zbl 0357.35006[52] Rabinowitz P.: 
Periodic solutions of nonlinear partial differential equations. Commun. Pure Appl. Math. 20 (1967), 145-205 II ibid. 22 (1969), 15-39. 
MR 0206507[53] Racke R.: 
On the Cauchy problem in nonlinear 3-d-thermoelasticity. Math. Z. 203 (1990), 649-682. 
MR 1044071 | 
Zbl 0701.73002[54] Racke R.: 
Blow-up in nonlinear three-dimensional thermoelasticity. Math. Meth. Appl. Sci. 12 (1990), 267-273. 
MR 1043758 | 
Zbl 0705.35081[55] Racke R.: Mathematical aspects in nonlinear thermoelasticity. SFB 256 Lecture Note Series { 25}, 1992.
[56] Racke R.: 
Lectures on nonlinear evolution equation. Initial value problems. Ser. ``Aspects of Mathematics'', Fridr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1992. 
MR 1158463[57] Racke R., Shibata Y.: 
Global smooth solutions and asymptotic stability in one-dimensional nonlinear thermoelasticity. Arch. Rational Mech. Anal. 116 (1991), 1-34. 
MR 1130241 | 
Zbl 0756.73012[58] Racke R., Shibata Y., Zheng S.: 
Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity. to appear in Quart. Appl. Math. 
MR 1247439 | 
Zbl 0804.35132[59] Rybka P.: 
Dynamical modelling of phase transitions by means of viscoelasticity in many dimensions. to appear in Proc. Roy. Soc. Edinburgh 121A (1992). 
MR 1169897 | 
Zbl 0758.73004[60] Shibata Y.: 
Neumann problem for one-dimensional nonlinear thermoelasticity. to appear in Banach Center Publication. 
MR 1205848[61] Shibata Y, Nakamura G.: 
On a local existence theorem of Neumann problem for some quasilinear hyperbolic systems of 2nd order. Math. Z. 202 (1989), 1-64. 
MR 1007739[62] Shibata Y., Kikuchi M.: 
On the mixed problem for some quasilinear hyperbolic system with fully nonlinear boundary condition. J. Diff. Eqns. 80 (1989), 154-197. 
MR 1003254 | 
Zbl 0689.35055[63] Shibata Y., Zheng S.: 
On some nonlinear hyperbolic systems with damping boundary conditions. Nonlinear Anal. TMA 17 (1991), 233-266. 
MR 1120976 | 
Zbl 0772.35031[64] Slemrod M.: 
Global existence, uniqueness, and asymptotic stability of classical smooth solutions in the one-dimensional non-linear thermoelasticity. Arch. Rational Mech. Anal. 76 (1981), 97-133. 
MR 0629700[65] Tanabe H.: 
Equations of evolution. Monographs and Studies in Mathematics, Pitman, London, San Francisco, Melbourne, l979. 
Zbl 0417.35003[66] Webb G.F.: 
Existence and asymptotic behavior for a strongly damped nonlinear wave equation. Canada J. Math. 32 (1980), 631-643. 
MR 0586981 | 
Zbl 0414.35046[67] Yamada Y.: 
Some remarks on the equation $u_{tt} - \sigma(y_x)y_{xx} -y_{xtx} = f$. Osaka J. Math. 17 (1980), 303-323. 
MR 0587752[68] Zheng S.: 
Global solutions and applications to a class of quasilinear hyperbolic-parabolic coupled systems. Sci. Sinica Ser. A 27 (1984), 1274-1286. 
MR 0794293 | 
Zbl 0581.35056[69] Zheng S., Shen W.: 
Global solutions to the Cauchy problem of quasilinear hyperbolic parabolic coupled systems. Sci. Sinica Ser. A 3 (1987), 1133-1149. 
MR 0942420 | 
Zbl 0649.35013[70] Zuazua E.: 
Stability and decay for a class of nonlinear hyperbolic problems. Asymptotic Anal. 1 (1988), 161-185. 
MR 0950012 | 
Zbl 0677.35069