Previous |  Up |  Next

Article

Keywords:
closed submanifold; total mean curvature; minimal submanifold
Summary:
For closed immersed submanifolds of Euclidean spaces, we prove that $\int |\mu |^2\, dV\geq V/R^2$, where $\mu $ is the mean curvature field, $V$ the volume of the given submanifold and $R$ is the radius of the smallest sphere enclosing the submanifold. Moreover, we prove that the equality holds only for minimal submanifolds of this sphere.
References:
[1] Benson R.: Euclidean Geometry and Convexity. Mc Graw-Hill, New York, 1966. MR 0209949 | Zbl 0187.44103
[2] Chen B.-Y.: Total Mean Curvature and Submanifolds of Finite Type. World Scientific, Singapore, 1984. MR 0749575 | Zbl 0537.53049
[3] Chern S.S., Hsiung C.C.: On the isometry of compact submanifolds in Euclidean space. Math. Ann. 149 (1962/63), 278-285. MR 0148011
[4] Kühnel W.: A lower bound for the $i$-th total absolute curvature of an immersion. Colloq. Math. 41 (1969), 253-255. MR 0591931
[5] Reilly R.: On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space. Comm. Math. Helv. 52 (1977), 525-533. MR 0482597 | Zbl 0382.53038
[6] Spivak M.: A Comprehensive Introduction to Differential Geometry. Vol. I-V, Publish or Perish, Berkeley, 1970-1979. MR 0532830 | Zbl 0439.53005
[7] Weiner J.L.: An inequality involving the length, curvature and torsions of a curve in Euclidean $n$-space. Pacific J. Math. 74 (1978), 531-534. MR 0478025 | Zbl 0377.53001
[8] Willmore T.J.: Note on embedded surfaces. An. St. Univ. Iasi, s.I.a. Mat. 12B (1965), 493-496. MR 0202066 | Zbl 0171.20001
[9] Willmore T.J.: Tight immersions and total absolute curvature. Bull London Math. Soc. 3 (1971), 129-151. MR 0292003 | Zbl 0217.19001
[10] Willmore T.J.: Total Curvature in Riemannian Geometry. Ellis Horwood Limited, Chichester, 1982. MR 0686105 | Zbl 0501.53038
Partner of
EuDML logo