Article
Keywords:
countably compact; initially $\kappa $-compact; weakly $\delta \theta $-refinable; $\kappa $-refinable; sequential
Summary:
We present short and elementary proofs of the following two known theorems in General Topology: (i) [H. Wicke and J. Worrell] A $T_1$ weakly $\delta \theta $-refinable countably compact space is compact. (ii) [A. Ostaszewski] A compact Hausdorff space which is a countable union of metrizable spaces is sequential.
References:
                        
[A] Arhangel'skiĭ A.V.: 
The star method, new classes of spaces and countable compactness. Soviet Math. Dokl. 21 (1980), 550-554. 
MR 0569369[B] Burke D.K.: 
Covering properties. Handbook of Set Theoretic Topology, North Holland, 1984, pp. 347-422. 
MR 0776628 | 
Zbl 0569.54022[O] Ostaszewski A.J.: 
Compact $\sigma $-metric Hausdorff spaces are sequential. Proc. Amer. Math. Soc. 68 (1978), 339-343. 
MR 0467677 | 
Zbl 0392.54014[S] Stephenson R.M., Jr.: 
Initially $\kappa $-compact and related spaces. Handbook of Set Theoretic Topology, North Holland (1984), pp. 603-632. 
MR 0776632 | 
Zbl 0588.54025[WW] Wicke H.H., Worrell J.M., Jr.: 
Point countability and compactness. Proc. Amer. Math. Soc. 55 (1976), 427-431. 
MR 0400166 | 
Zbl 0323.54013