Article
Keywords:
uniform space; uniform weight; fine uniformity; uniformly locally finite; $\omega _\mu $-additive space; $\omega _\mu $-metric space
Summary:
Let $X$ be a uniform space of uniform weight $\mu$. It is shown that if every open covering, of power at most $\mu$, is uniform, then $X$ is fine. Furthermore, an $\omega _\mu $-metric space is fine, provided that every finite open covering is uniform.
References:
                        
[1] Artico G. and Moresco R.: 
$\;ømega_\mu$-additive topological spaces. Rend. Sem. Mat. Univ. Padova 67 (1982), 131-141. 
MR 0682706 
[2] Atsuji M.: 
Uniform continuity of continuous functions of metric spaces. Pacific J. Math. 8 (1958), 11-16. 
MR 0099023 | 
Zbl 0082.16207 
[3] Di Concilio A., Naimpally S.A.: 
Uniform continuity in sequentially uniform spaces. Acta Mathematica Hungarica 61 3-4 (1993 \toappear). 
MR 1200953 | 
Zbl 0819.54014 
[5] Isbell J.R.: 
Uniform Spaces. Mathematical Surveys nr 12 AMS Providence, Rhode Island (1964). 
MR 0170323 | 
Zbl 0124.15601 
[6] Isiwata T.: On uniform continuity of $C(X)$ (Japanese). Sugaku Kenkiu Roku of Tokyo Kyoiku Daigaku 2 (1955), 36-45.
[7] Marconi U.: 
On the uniform paracompactness. Rend. Sem. Mat. Univ. Padova 72 (1984), 101-105. 
MR 0778348 | 
Zbl 0566.54013 
[8] Marconi U.: 
On uniform paracompactness of the $\;ømega_\mu$-metric spaces. Rend. Accad. Naz. Lincei 75 (1983), 102-105. 
MR 0780810 
[10] Rainwater J.: 
Spaces whose finest uniformity is metric. Pacific J. Math. 9 (1959), 567-570. 
MR 0106448 | 
Zbl 0088.38301