Previous |  Up |  Next

Article

Keywords:
uniform space; uniform weight; fine uniformity; uniformly locally finite; $\omega _\mu $-additive space; $\omega _\mu $-metric space
Summary:
Let $X$ be a uniform space of uniform weight $\mu$. It is shown that if every open covering, of power at most $\mu$, is uniform, then $X$ is fine. Furthermore, an $\omega _\mu $-metric space is fine, provided that every finite open covering is uniform.
References:
[1] Artico G. and Moresco R.: $\;ømega_\mu$-additive topological spaces. Rend. Sem. Mat. Univ. Padova 67 (1982), 131-141. MR 0682706
[2] Atsuji M.: Uniform continuity of continuous functions of metric spaces. Pacific J. Math. 8 (1958), 11-16. MR 0099023 | Zbl 0082.16207
[3] Di Concilio A., Naimpally S.A.: Uniform continuity in sequentially uniform spaces. Acta Mathematica Hungarica 61 3-4 (1993 \toappear). MR 1200953 | Zbl 0819.54014
[4] Engelking R.: General Topology. Polish Scientific Publishers Warsaw (1977). MR 0500780 | Zbl 0373.54002
[5] Isbell J.R.: Uniform Spaces. Mathematical Surveys nr 12 AMS Providence, Rhode Island (1964). MR 0170323 | Zbl 0124.15601
[6] Isiwata T.: On uniform continuity of $C(X)$ (Japanese). Sugaku Kenkiu Roku of Tokyo Kyoiku Daigaku 2 (1955), 36-45.
[7] Marconi U.: On the uniform paracompactness. Rend. Sem. Mat. Univ. Padova 72 (1984), 101-105. MR 0778348 | Zbl 0566.54013
[8] Marconi U.: On uniform paracompactness of the $\;ømega_\mu$-metric spaces. Rend. Accad. Naz. Lincei 75 (1983), 102-105. MR 0780810
[9] Morita K.: Paracompactness and product spaces. Fund. Math. 50 (1962), 223-236. MR 0132525 | Zbl 0099.17401
[10] Rainwater J.: Spaces whose finest uniformity is metric. Pacific J. Math. 9 (1959), 567-570. MR 0106448 | Zbl 0088.38301
Partner of
EuDML logo