Article
Keywords:
semi-symmetric spaces; Jacobi operators; $\frak C$- and $\frak P$-spaces
Summary:
We determine explicitly the local structure of a semi-symmetric $\frak P$-space.
References:
                        
[BePV] Berndt J., Prüfer F., Vanhecke L.: 
Symmetric-like Riemannian manifolds and geodesic symmetries. Proc. Royal Soc. Edingurgh, Sect. A, to appear. 
MR 1331561[BeV1] Berndt J., Vanhecke L.: 
Two natural generalizations of locally symmetric spaces. Diff. Geom. Appl. 2 (1992), 57-80. 
MR 1244456 | 
Zbl 0747.53013[BeV2] Berndt J., Vanhecke L.: 
Geodesic spheres and generalizations of symmetric spaces. Boll. Un. Nat. Ital. 7-A (1993), 125-134. 
MR 1215106 | 
Zbl 0778.53043[BeV3] Berndt J., Vanhecke L.: 
Geodesic sprays and $\frak C$- and $\frak P$-spaces. Rend. Sem. Mat. Univ. Politec. Torino 50 (1992), 343-358. 
MR 1261447[BKV] Boeckx E., Kowalski O., Vanhecke L.: 
Non-homogeneous relatives of symmetric spaces. Diff. Geom. Appl., to appear. 
Zbl 0796.53046[C] Cho J.T.: 
Natural generalizations of locally symmetric spaces. Indian J. Pure Appl. Math. 24 (1993), 231-240. 
MR 1218533 | 
Zbl 0772.53029[K] Kowalski O.: 
An explicit classification of $3$-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$. preprint, 1991. 
MR 1408298 | 
Zbl 0879.53014[Sz1] Szabó Z.I.: 
Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$, I, Local version. J. Diff. Geom. 17 (1982), 531-582. 
MR 0683165[Sz2] Szabó Z.I.: 
Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$, II, Global versions. Geom. Dedicata 19 (1985), 65-108. 
MR 0797152