[3] Cohen M., Montgomery S.: 
Group-graded rings, smash products, and group actions. Trans. Amer. Math. Soc. 282 (1984), 237-258. 
MR 0728711 | 
Zbl 0533.16001[6] Jespers E.: 
On radicals of graded rings and applications to semigroup rings. Commun. Algebra 13 (1985), 2457-2472. 
MR 0807485 | 
Zbl 0575.16001[7] Jespers E., Krempa J., Puczyłowski E.R.: 
On radicals of graded rings. Commun. Algebra 10 (1982), 1849-1854. 
MR 0674695[8] Jespers E., Puczyłowski E.R.: 
The Jacobson and Brown-McCoy radicals of rings graded by free groups. Commun. Algebra 19 (1991), 551-558. 
MR 1100363[9] Karpilovsky G.: 
The Jacobson Radical of Classical Rings. Pitman Monographs, New York, 1991. 
MR 1124405 | 
Zbl 0729.16001[10] Kelarev A.V.: 
Hereditary radicals and bands of associative rings. J. Austral. Math. Soc. (Ser. A) 51 (1991), 62-72. 
MR 1119688 | 
Zbl 0756.16010[11] Kelarev A.V.: 
Radicals of graded rings and applications to semigroup rings. Commun. Algebra 20 (1992), 681-700. 
MR 1153042 | 
Zbl 0748.16018[12] Năstăsescu C.: 
Strongly graded rings of finite groups. Commun. Algebra 11 (1983), 1033-1071. 
MR 0700723[13] Okniński J.: 
On the radical of semigroup algebras satisfying polynomial identities. Math. Proc. Cambridge Philos. Soc. 99 (1986), 45-50. 
MR 0809496[14] Okniński J.: 
Semigroup Algebras. Marcel Dekker, New York, 1991. 
MR 1083356[15] Passman D.S.: 
Infinite crossed products and group graded rings. Trans. Amer. Math. Soc. 284 (1984), 707-727. 
MR 0743740 | 
Zbl 0519.16010[16] Passman D.S.: 
The Algebraic Structure of Group Rings. Wiley Interscience, New York, 1977. 
MR 0470211 | 
Zbl 0654.16001[17] Puczyłowski E.R.: 
A note on graded algebras. Proc. Amer. Math. Soc. 113 (1991), 1-3. 
MR 0991706[18] Puczyłowski E.R.: 
Some questions concerning radicals of associative rings. Proc. Szekszásrd 1991 Conf. Theory of Radicals Coll. Math. Soc. János Bolyai 61 (1993), 209-227. 
MR 1243913[19] Ram J.: 
On the semisimplicity of skew polynomial rings. Proc. Amer. Math. Soc. 90 (1984), 347-351. 
MR 0728345 | 
Zbl 0535.16002[20] Saorín M.: 
Descending chain conditions for graded rings. Proc. Amer. Math. Soc. 115 (1992), 295-301. 
MR 1093603[21] Wauters P., Jespers E.: 
Rings graded by an inverse semigroup with finitely many idempotents. Houston J. Math. 15 (1989), 291-304. 
MR 1022070 | 
Zbl 0685.16003