[1] Albertson M., Berman D.: 
An acyclic analogue to Heawood's theorem. Glasgow Math. J. 19 (1978), 163-166. 
MR 0485490 | 
Zbl 0378.05030[2] Alon N., McDiarmid C., Read B.: 
Acyclic colorings of graphs. Random Structures and Algorithms 2 (1991), 277-289. 
MR 1109695[4] Borodin O.V., Kostochka A.V., Nešetřil J., Raspaud A., Sopena E.: 
On the maximum average degree and the oriented chromatic number of a graph. preprint, 1995. 
MR 1665387[6] Häggkvist R., Hell P.: 
On $A$-mote universal graphs. European J. Combin. 13 (1993), 23-27. 
MR 1197472[7] Hell P., Nešetřil J.: 
On the complexity of $H$-coloring. J. Combin. Theory Series B 48 (1990), 92-110. 
MR 1047555[8] Hell P., Nešetřil J., Zhu X.: Duality theorems and polynomial tree-coloring. Trans. Amer. Math. Soc., to appear.
[9] Hell P., Nešetřil J., Zhu X.: 
Duality of graph homomorphisms. Combinatorics, Paul Erdös is eighty, Vol. 2, Bolyai Society Mathematical Studies, 1993. 
MR 1395863[11] Kostochka A.V., Mel'nikov L.S.: 
Note to the paper of Grünbaum on acyclic colorings. Discrete Math. 14 (1976), 403-406. 
MR 0404037 | 
Zbl 0318.05103[12] Kostochka A.V., Sopena E., Zhu X.: 
Acyclic and oriented chromatic numbers of graphs. preprint 95-087, Univ. Bielefeld, 1995. 
MR 1437294 | 
Zbl 0873.05044[13] Maurer H.A., Salomaa A., Wood D.: 
Colorings and interpretations: a connection between graphs and grammar forms. Discrete Applied Math. 3 (1981), 119-135. 
MR 0607911 | 
Zbl 0466.05034[14] Nash-Williams C.St.J.A.: 
Decomposition of finite graphs into forests. J. London Math. Soc. 39 (1964), 12. 
MR 0161333 | 
Zbl 0119.38805[15] Nešetřil J.: 
Homomorphisms of derivative graphs. Discrete Math. 1 -3 (1971), 257-268. 
MR 0300939[16] Nešetřil J., Raspaud A., Sopena E.: Colorings and girth of oriented planar graphs. Research Report 1084-95, Univ. Bordeaux I, 1995.
[17] Nešetřil J., Zhu X.: 
On bounded treewidth duality of graph homomorphisms. J. Graph Theory, to appear. 
MR 1408343[18] Raspaud A., Sopena E.: 
Good and semi-strong colorings of oriented planar graphs. Inf. Processing Letters 51 (1994), 171-174. 
MR 1294309 | 
Zbl 0806.05031[19] Sopena E.: 
The chromatic number of oriented graphs. Research Report 1083-95, Univ. Bordeaux I, 1995. 
Zbl 0874.05026[20] Thomas R.: Personal communication. 1995.