[1] Charatonik J.J.: 
The property of Kelley and confluent mappings. Bull. Polish Acad. Sci. Math. 31 (1983), 375-380. 
MR 0756917 | 
Zbl 0544.54028[2] Charatonik J.J.: 
Generalized homogeneity of curves and a question of H. Kato. Bull. Polish Acad. Sci. Math. 36 (1988), 409-411. 
MR 1101430 | 
Zbl 0767.54030[3] Charatonik J.J.: 
Monotone mappings of universal dendrites. Topology Appl. 38 (1991), 163-187. 
MR 1094549 | 
Zbl 0726.54012[4] Charatonik J.J., Charatonik W.J., Prajs J.R.: 
Mapping hierarchy for dendrites. Dissertationes Math. (Rozprawy Mat.) 333 (1994), 1-52. 
MR 1279238 | 
Zbl 0822.54009[6] Charatonik W.J., Dilks A.: 
On self-homeomorphic spaces. Topology Appl. 55 (1994), 215-238. 
MR 1259506 | 
Zbl 0788.54040[7] Cook H., Ingram W.T., Kuperberg K.T., Lelek A., Minc P. (editors): 
Continua, with the Houston problem book. M. Dekker, 1995. 
MR 1326830[8] Czuba S.T.: 
On dendroids with Kelley's property. Proc. Amer. Math. Soc. 102 (1988), 728-730. 
MR 0929011 | 
Zbl 0648.54030[9] Eberhart C., Fugate J.B., Gordh G.R., Jr.: 
Branchpoint covering theorems for confluent and weakly confluent maps. Proc. Amer. Math. Soc. 55 (1976), 409-415. 
MR 0410703 | 
Zbl 0335.54010[10] Goodkyoontz J.T., Jr.: 
Some functions on hyperspaces of hereditarily unicoherent continua. Fund. Math. 95 (1977), 1-10. 
MR 0436097[11] Gordh G.R., Jr., Lum L.: 
Monotone retracts and some characterizations of dendrites. Proc. Amer. Math. Soc. 59 (1976), 156-158. 
MR 0423317 | 
Zbl 0304.54034[12] Kato H.: 
Generalized homogeneity of continua and a question of J.J. Charatonik. Houston J. Math. 13 (1987), 51-63. 
MR 0884233 | 
Zbl 0635.54017[14] Kuratowski K.: 
Topology, vol. II. Academic Press and PWN, 1968. 
MR 0259835[15] Lum L.: 
A characterization of local connectivity in dendroids. in: Studies in Topology, Academic Press, 1975, pp.331-338. 
MR 0358739 | 
Zbl 0306.54050[16] Maćkowiak T.: 
Semi-confluent mappings and their invariants. Fund. Math. 69 (1973), 251-264. 
MR 0321044[17] Maćkowiak T.: 
Continuous mappings on continua. Dissertationes Math. (Rozprawy Mat.) 158 (1979), 1-91. 
MR 0522934[18] Mazurkiewicz S.: Sur les continus homogènes. Fund. Math. 5 (1924), 137-146.
[19] Nikiel J.: 
A characterization of dendroids with uncountably many endpoints in the classical sense. Houston J. Math. 9 (1983), 421-432. 
MR 0719101