Article
Keywords:
cardinal function; almost P-space
Summary:
Motivated by some examples, we introduce the concept of special almost P-space and show, using the reflection principle, that for every space $X$ of this kind the inequality ``$|X| \leq \psi_{c}(X)^{t(X)}$" holds.
References:
                        
[1] Dow A.: 
An introduction to applications of elementary submodels to topology. Topology Proc. 13 (1988), 17-72. 
MR 1031969 | 
Zbl 0696.03024[4] Fedeli A., Watson S.: 
Elementary submodels and cardinal functions. Topology Proc., to appear. 
MR 1429175 | 
Zbl 0894.54008[5] Hodel R.E.: 
Cardinal Functions I. in: Handbook of Set-theoretic Topology, (Kunen K. and Vaughan J.E., eds.), North Holland, 1984, pp.1-61. 
MR 0776620 | 
Zbl 0559.54003[6] Juhàsz I.: 
Cardinal Functions in Topology-ten years later. Mathematical Centre Tracts 123, Amsterdam, 1980. 
MR 0576927[8] van Mill J.: 
An introduction to $\betaømega$. in: Handbook of Set-theoretic Topology, (Kunen K. and Vaughan J.E., eds.), North Holland, 1984, pp.503-567. 
MR 0776630[9] Watson S.: 
The construction of topological spaces: Planks and Resolutions. in: Recent Progress in General Topology (Hušek M. and Van Mill J., eds.), North Holland, 1992, pp.675-757. 
MR 1229141 | 
Zbl 0803.54001[10] Watson S.: 
The Lindelöf number of a power; an introduction to the use of elementary submodels in general topology. Topology Appl. 58 (1994), 25-342. 
MR 1280708 | 
Zbl 0836.54004