Article
Keywords:
eigenvalue; the p-Laplacian; indefinite weight; regularity
Summary:
The nonlinear eigenvalue problem for p-Laplacian $$ \cases - \operatorname{div} (a(x) |\nabla u|^{p-2} \nabla u) = \lambda g (x) |u|^{p-2} u \text{ in } \Bbb R^N, \ u >0 \text{ in } \Bbb R^N, \mathop{\lim}\limits_{|x|\to \infty} u(x) = 0, \endcases $$ is considered. We assume that $1 < p < N$ and that $g$ is indefinite weight function. The existence and $C^{1, \alpha}$-regularity of the weak solution is proved.
References:
                        
[2] Allegretto W., Huang Y.X.: 
Eigenvalues of the indefinite weight p-Laplacian in weighted spaces. Funkc. Ekvac. 38 (1995), 233-242. 
MR 1356326 | 
Zbl 0922.35114[3] Drábek P.: 
Nonlinear eigenvalue for p-Laplacian in $\Bbb R^N$. Math. Nach 173 (1995), 131-139. 
MR 1336957[4] Drábek, Huang Y.X.: Bifurcation problems for the p-Laplacian in $\Bbb R^N$. to appear in Trans. of AMS.
[5] Fleckinger J., Manasevich R.F., Stavrakakis N.M., de Thelin F.: Principal eigenvalues for some quasilinear elliptic equations on $\Bbb R^N$. preprint.
[6] Huang Y.X.: 
Eigenvalues of the p-Laplacian in $\Bbb R^N$ with indefinite weight. Comment. Math. Univ. Carolinae 36 (1995), 519-527. 
MR 1364493[7] Lindqvist P.: 
On the equation ${div} (|\nabla u|^{p-2} \nabla u) + \lambda |u|^{p-2} u = 0$. Proc. Amer. Math. Society 109 (1990), 157-164. 
MR 1007505 | 
Zbl 0714.35029[8] Serin J.: 
Local behavior of solutions of quasilinear equations. Acta Math. 111 (1964), 247-302. 
MR 0170096[9] Tolkdorf P.: 
Regularity for a more general class of quasilinear elliptic equations. J. Diff. Equations 51 (1984), 126-150. 
MR 0727034[10] Trudinger N.S.: 
On Harnack type inequalities and their applications to quasilinear elliptic equations. Comm. Pure. Appl. Math. 20 (1967), 721-747. 
MR 0226198