Article
Keywords:
frame; locale; lower (upper) continuous chain; normal locale
Summary:
In this paper, localic upper, respectively lower continuous chains over a locale are defined. A localic Katětov-Tong insertion theorem is given and proved in terms of a localic upper and lower continuous chain. Finally, the localic Urysohn lemma and the localic Tietze extension theorem are shown as applications of the localic insertion theorem.
References:
                        
[2] Fourman M.P., Hyland J.M.E.: 
Sheaf models for analysis. Applications of sheaves, Lecture Notes in Math., vol. 753, Springer-Verlag, 1979, pp.280-301. 
MR 0555550 | 
Zbl 0427.03028[4] Johnstone P.T.: 
The point of pointless topology. Bull. Amer. Math. Soc. 8 (1983), 41-53. 
MR 0682820 | 
Zbl 0499.54002[5] Katětov M.: 
On real-valued functions in topological spaces. Fund. Math. 38 (1951), 85-91; correction 40 (1953), 203-205. 
MR 0050264[6] Kubiak T.: 
A strengthening of the Katětov-Tong insertion theorem. Comment. Math. Univ. Carolinae 34 (1993), 357-362. 
MR 1241744 | 
Zbl 0807.54023[7] Li Yong-ming: 
Weak locale quotient morphisms and locally connected frames. J. Pure Appl. Alg. 110 (1996), 101-107. 
MR 1390674[8] Liu Yingming, Luo Maokang: 
Lattice-valued Hahn-Dieudonné-Tong insertion theorem and stratification structure. Top. Appl. 45 (1992), 173-178. 
MR 1180808 | 
Zbl 0767.54016[9] Madden J.J.: 
Frames associated with an abelian $l$-group. Trans. Amer. Math. Soc. 331 (1992), 265-279. 
MR 1042288 | 
Zbl 0765.54029[10] Pultr A., Tozzi A.: 
Equationally closed subframes and representation of quotient spaces. Cahiers Top. Geom. Diff. Cat. 33 (1993), 167-183. 
MR 1239466 | 
Zbl 0789.54008[11] Tong H.: 
Some characterization of normal and perfectly normal spaces. Bull. Amer. Math. Soc. 54 (1948), 65; see also Duke Math. Soc. 19 (1952), 248-292. 
MR 0050265