| Title: | Continuous functions between Isbell-Mrówka spaces (English) | 
| Author: | García-Ferreira, S. | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 39 | 
| Issue: | 1 | 
| Year: | 1998 | 
| Pages: | 185-195 | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $\Psi(\Sigma)$ be the Isbell-Mr'owka space associated to the $MAD$-family $\Sigma$. We show that if $G$ is a countable subgroup of the group ${\bold S}(\omega)$ of all permutations of $\omega$, then there is a $MAD$-family $\Sigma$ such that every $f \in G$ can be extended to an autohomeomorphism of $\Psi(\Sigma)$. For a $MAD$-family $\Sigma$, we set $Inv(\Sigma) = \{ f \in {\bold S}(\omega) : f[A] \in \Sigma $ for all $A \in \Sigma \}$. It is shown that for every $f \in {\bold S}(\omega)$ there is a $MAD$-family $\Sigma$ such that $f \in Inv(\Sigma)$. As a consequence of this result we have that there is a $MAD$-family $\Sigma$ such that $n+A \in \Sigma$ whenever $A \in \Sigma$ and $n < \omega$, where $n+A = \{ n+a : a \in A \}$ for $n < \omega$. We also notice that there is no $MAD$-family $\Sigma$ such that $n \cdot A \in \Sigma$ whenever $A \in \Sigma$ and $1 \leq n < \omega$, where $n \cdot A = \{ n \cdot a : a \in A \}$ for $1 \leq n < \omega$. Several open questions are listed. (English) | 
| Keyword: | $MAD$-family | 
| Keyword: | Isbell-Mr'owka space | 
| MSC: | 54A20 | 
| MSC: | 54A35 | 
| MSC: | 54C20 | 
| idZBL: | Zbl 0938.54004 | 
| idMR: | MR1623018 | 
| . | 
| Date available: | 2009-01-08T18:39:58Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/118997 | 
| . | 
| Reference: | [BV] Balcar B., Vojtáš P.: Almost disjoint refinement of families of subsets of $N$.Proc. Amer. Math. Soc. 79 (1980), 465-470. MR 0567994 | 
| Reference: | [Ba] Baskirov A.I.: On maximal almost disjoint systems and Franklin bicompacta.Soviet. Math. Dokl. 19 (1978), 864-868. MR 0504217 | 
| Reference: | [CN] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters.Grudlehren der Mathematischen Wissenschaften, Vol. 211, Springer-Verlag, 1974. Zbl 0298.02004, MR 0396267 | 
| Reference: | [GJ] Gillman L., Jerison M.: Rings of Continuous Functions.Graduate Texts in Mathematics, Vol. 43, Springer-Verlag, 1976. Zbl 0327.46040, MR 0407579 | 
| Reference: | [Ka] Katětov M.: A theorem on mappings.Comment. Math. Univ. Carolinae 8 (1967), 431-433. MR 0229228 | 
| Reference: | [L] Levy R.: Almost $P$-spaces.Can. J. Math. 29 (1977), 284-288. Zbl 0342.54032, MR 0464203 | 
| Reference: | [Mr] Mrówka S.: On completely regular spaces.Fund. Math. 41 (1954), 105-106. MR 0063650 | 
| . |