| Title: | Hopf algebras of smooth functions on compact Lie groups (English) | 
| Author: | Farkas, Eva C. | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 41 | 
| Issue: | 4 | 
| Year: | 2000 | 
| Pages: | 651-661 | 
| . | 
| Category: | math | 
| . | 
| Summary: | A $C^{\infty}$-Hopf algebra is a $C^{\infty}$-algebra which is also a convenient Hopf algebra with respect to the structure induced by the evaluations of smooth functions. We characterize those $C^{\infty}$-Hopf algebras which are given by the algebra $C^{\infty}(G)$ of smooth functions on some compact Lie group $G$, thus obtaining an anti-isomorphism of the category of compact Lie groups with a subcategory of convenient Hopf algebras. (English) | 
| Keyword: | $C^{\infty}$-Hopf-algebras | 
| Keyword: | algebras of smooth functions on compact Lie groups | 
| Keyword: | duality theorem | 
| MSC: | 16W30 | 
| MSC: | 22D35 | 
| MSC: | 22E15 | 
| MSC: | 46E25 | 
| MSC: | 46J15 | 
| idZBL: | Zbl 1051.16021 | 
| idMR: | MR1800176 | 
| . | 
| Date available: | 2009-01-08T19:06:05Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/119199 | 
| . | 
| Reference: | [1] Abe E.: Hopf Algebras.Cambridge University Press, Cambridge, 1980. Zbl 0476.16008, MR 0594432 | 
| Reference: | [2] Bourbaki N.: Groupes et algèbres de Lie.Hermann, Paris, 1972. Zbl 1123.22005, MR 0573068 | 
| Reference: | [3] Cooper J.B., Michor P.: Duality of compactological and locally compact groups.Proc. Conf. Categorical Topology Mannheim 1975, Springer Lecture Notes 540, 1976. MR 0507225 | 
| Reference: | [4] Frölicher A., Kriegl A.: Linear Spaces and Differentiation Theory.J. Wiley, Chichester, 1988. MR 0961256 | 
| Reference: | [5] Hochschild G.: The Structure of Lie Groups.Holden-Day, 1965. Zbl 0131.02702, MR 0207883 | 
| Reference: | [6] Jarchow H.: Locally Convex Spaces.Teubner, Stuttgart, 1981. Zbl 0466.46001, MR 0632257 | 
| Reference: | [7] Kainz G., Kriegl A., Michor P.: $C^{\infty}$-algebras from the functional analytic view.J. of Pure and Applied Algebra 46 (1987), 89-107. MR 0894394 | 
| Reference: | [8] Kriegl A., Michor P.W.: The convenient setting of global analysis.Mathematical Surveys and Monographs, Vol. 53, Amer. Math. Soc., 1997. Zbl 0889.58001, MR 1471480 | 
| Reference: | [9] Kriegl A., Michor P.W., Schachermayer W.: Characters on algebras of smooth functions.Ann. Global Anal. Geom. 7 ,2 (1989), 85-92. Zbl 0691.58020, MR 1032327 | 
| Reference: | [10] Michor P.W., Vanžura J.: Characterizing algebras of smooth functions on manifolds.Comment. Math. Univ. Carolinae 37 ,3 (1996), 519-521. MR 1426917 | 
| Reference: | [11] Milnor J.W., Stasheff J.D.: Characteristic classes.Ann. of Math. Stud., Princeton Univ. Press, Princeton, 1974. Zbl 1079.57504, MR 0440554 | 
| Reference: | [12] Moerdijk I., Reyes G.E.: Models for Smooth Infinitesimal Analysis.Springer, Berlin/Heidelberg/New-York, 1991. Zbl 0715.18001, MR 1083355 | 
| Reference: | [13] Takahashi S.: A characterization of group rings as a special class of Hopf algebras.Canad. Math. Bull. 8 ,4 (1965), 465-75. Zbl 0143.26705, MR 0184988 | 
| Reference: | [14] Tannaka T.: Dualität der nicht-kommutativen bikompakten Gruppen.Tohoku Math. J. 53 (1938), 1-12. | 
| Reference: | [15] Yosida K.: Functional Analysis.Springer, Berlin/Heidelberg/New-York, 1980. Zbl 0830.46001, MR 0617913 | 
| . |