[1] Albert A.A.: 
Quasigroups I. Trans. Amer. Math. Soc. 54 (1943), 507-519 and {Quasigroup II}, Trans. Amer. Math. Soc. 55 (1944), 401-419. 
MR 0009962 | 
Zbl 0063.00039[2] Barrington D.A., Straubing H., Thérien D.: 
Non-uniform automata over groups. Information and Computation 89 (1990), 109-132. 
MR 1080845[3] Barrington D., Thérien D.: 
Finite monoids and the fine structure of $NC^1$. Journal of the ACM 35 (1988), 941-952. 
MR 1072406[4] Bruck R.H.: 
Contributions to the theory of loops. Trans. Amer. Math. Soc 60 (1946), 245-354. 
MR 0017288 | 
Zbl 0061.02201[6] Caussinus H., Lemieux F.: 
The complexity of computing over quasigroups. in Proc. 14th annual FST&TCS, 1994, pp.36-47. 
MR 1318016 | 
Zbl 1044.68679[7] Chein O., Pflugfelder H.O., Smith J.D.H. (eds.): 
Quasigroups and Loops: Theory and Applications. Heldermann Verlag, 1990. 
MR 1125806 | 
Zbl 0719.20036[8] Dénes J., Keedwell A.D.: 
Latin Squares and their Applications. English University Press, 1974. 
MR 0351850[9] Goldmann M., Russell A.: Proc. 14th Annual IEEE Conference on Computational Complexity, 1999. 
[11] Lemieux F.: Finite Groupoids and their Applications to Computational Complexity. Ph.D. Thesis, School of Computer Science, McGill University, Montréal, 1996.
[12] Maurer W.D., Rhodes J.: 
A property of finite simple non-Abelian groups. Proc. Amer. Math. Soc. 16 (1965), 552-554. 
MR 0175971 | 
Zbl 0132.26903[13] McKenzie R.: On minimal, locally finite varieties with permuting congruence relations. preprint, 1976.
[14] Moore C.: 
Predicting non-linear cellular automata quickly by decomposing them into linear ones. Physica D 111 (1998), 27-41. 
MR 1601494[15] Moore C., Thérien D., Lemieux F., Berman J., Drisko A.: Circuits and expressions with non-associative gates. to appear in J. Comput. System Sci.
[18] Straubing H.: 
Families of recognizable sets corresponding to certain families of finite monoids. J. Pure Appl. Algebra 15 (1979), 305-318. 
MR 0537503[19] Straubing H.: Representing functions by words over finite semigroups. Université de Montréal, Technical Report #838, 1992.
[21] Thérien D.: 
Classification of finite monoids: the language approach. Theor. Comp. Sci. 14 (1981), 195-208. 
MR 0614416[22] Szendrei A.: 
Clones in Universal Algebra. Les Presses de L'Université de Montréal, 1986. 
MR 0859550 | 
Zbl 0603.08004