Article
Keywords:
independent random elements; copy of $c_{0}$; Pettis integrable function; perfect measure space
Summary:
In this note we investigate the relationship between the convergence of the sequence $\{S_{n}\}$ of sums of independent random elements of the form $S_{n}=\sum_{i=1}^{n}\varepsilon_{i}x_{i}$ (where $\varepsilon_{i}$ takes the values $\pm\,1$ with the same probability and $x_{i}$ belongs to a real Banach space $X$ for each $i\in \Bbb N$) and the existence of certain weakly unconditionally Cauchy subseries of $\sum_{n=1}^{\infty}x_{n}$.
References:
                        
[1] Cembranos P., Mendoza J.: 
Banach Spaces of Vector-Valued Functions. LNM 1676, Springer, 1997. 
MR 1489231 | 
Zbl 0902.46017[2] Díaz S., Fernández A., Florencio M., Paúl P.J.: 
Complemented copies of $c_{0}$ in the space of Pettis integrable functions. Quaestiones Math. 16 (1993), 61-66. 
MR 1217475[3] Diestel J.: 
Sequences and series in Banach spaces. GTM 92, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984. 
MR 0737004[4] Diestel J., Uhl J.: 
Vector measures. Math Surveys 15, Amer. Math. Soc., Providence, 1977. 
MR 0453964 | 
Zbl 0521.46035[6] Freniche F.J.: 
Embedding $c_{0}$ in the space of Pettis integrable functions. Quaestiones Math. 21 (1998), 261-267. 
MR 1701785 | 
Zbl 0963.46025[7] Halmos P.R.: 
Measure Theory. GTM 18, Springer, New York-Berlin-Heidelberg-Barcelona, 1950. 
MR 0033869 | 
Zbl 0283.28001[8] Kwapień S.: 
On Banach spaces containing $c_{0}$. Studia Math. 52 (1974), 187-188. 
MR 0356156[9] Vakhania N.N., Tarieladze V.I., Chobanian S.A.: 
Probability Distributions on Banach Spaces. D. Reidel Publishing Company, Dordrecht, 1987. 
MR 1435288