[1] Bentley H.L., Herrlich H.: 
Countable choice and pseudometric spaces. Topology Appl. 85 (1998), 153-164. 
MR 1617460 | 
Zbl 0922.03068[2] Börger R.: On powers of a Lindelöf space. preprint, November 2001.
[4] Brunner N.: 
Lindelöf Räume und Auswahlaxiom. Anz. Österreich. Akad. der Wiss. Math. Nat. Kl. 119 (1982), 161-165. 
MR 0728812[6] Church A.: 
Alternatives to Zermelo's assumption. Trans. Amer. Math. Soc. 29 (1927), 178-208. 
MR 1501383[8] Feferman S., Levy A.: Independence results in set theory by Cohen's method. Notices Amer. Math. Soc. 10 (1963), 593.
[10] Good C., Tree I.J.: 
Continuing horrors of topology without choice. Topology Appl. 63 (1995), 79-90. 
MR 1328621 | 
Zbl 0822.54001[11] Gutierres G.: Sequential topological conditions without AC. preprint, 2001.
[12] Herrlich H.: 
Compactness and the axiom of choice. Appl. Categ. Structures 3 (1995), 1-15. 
MR 1393958[13] Herrlich H., Keremedis K.: 
On countable products of finite Hausdorff spaces. Math. Logic Quart. 46 (2000), 537-542. 
MR 1791548 | 
Zbl 0959.03033[14] Herrlich H., Strecker G.E.: 
When is $\Bbb N$ Lindelöf?. Comment. Math. Univ. Carolinae 38 (1997), 553-556. 
MR 1485075 | 
Zbl 0938.54008[15] Howard P., Rubin J.E.: 
Consequences of the Axiom of Choice. AMS Math. Surveys and Monographs 59 AMS, Providence, RI, 1998. 
MR 1637107 | 
Zbl 0947.03001[17] Kelley J.: 
The Tychonoff product theorem implies the axiom of choice. Fund. Math. 37 (1950), 75-76. 
MR 0039982 | 
Zbl 0039.28202[18] Keremedis K.: 
Disasters in topology without the axiom of choice. Arch. Math. Logic, 2000, to appear. 
MR 1867681 | 
Zbl 1027.03040[19] Keremedis K.: Countable disjoint unions in topology and some weak forms of the axiom of choice. Arch. Math. Logic, submitted.
[20] Keremedis K., Tachtsis E.: 
On Lindelöf metric spaces and weak forms of the axiom of choice. Math. Logic Quart. 46 (2000), 35-44. 
MR 1736648 | 
Zbl 0952.03060[21] Lindelöf E.: Sur quelques points de la théorie des ensembles. C.R. Acad. Paris 137 (1903), 697-700.
[22] Mycielski J., Steinhaus H.: 
A mathematical axiom contradicting the axiom of choice. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 10 (1962), 1-3. 
MR 0140430 | 
Zbl 0106.00804[23] Rhineghost Y.T.: 
The naturals are Lindelöf iff Ascoli holds. Categorical Perspectives (eds. J. Koslowski and A. Melton), Birkhäuser, 2001. 
MR 1827669 | 
Zbl 0983.03039[24] Rubin H., Scott D.: Some topological theorems equivalent to the Boolean prime ideal theorem. Bull. Amer. Math. Soc. 60 (1954), 389.
[25] Sageev G.: 
An independence result concerning the axiom of choice. Annals Math. Logic 8 (1975), 1-184. 
MR 0366668 | 
Zbl 0306.02060[26] Specker E.: 
Zur Axiomatik der Mengenlehre (Fundierungs- und Auswahlaxiom). Z. Math. Logik Grundlagen Math. 3 (1957), 173-210. 
MR 0099297 | 
Zbl 0079.07605[27] van Douwen E.K.: 
Horrors of topology without AC: a nonnormal orderable space. Proc. Amer. Math. Soc. 95 (1985), 101-105. 
MR 0796455 | 
Zbl 0574.03039