[1] Anderson B.A.: 
A class of topologies with $T_1$-complements. Fund. Math. 69 (1970), 267-277. 
MR 0281140[2] Anderson B.A., Stewart D.G.: 
$T_1$-complements of $T_1$-topologies. Proc. Amer. Math. Soc. 23 (1969), 77-81. 
MR 0244927[4] Fleissner W.G.: 
A $T_B$-space which is not Katětov $T_B$. Rocky Mountain J. Math. 10 3 (1980), 661-663. 
MR 0590229 | 
Zbl 0448.54021[6] Pelant J., Tkačenko M.G., Tkachuk V.V., Wilson R.G.: Pseudocompact Whyburn spaces need not be Fréchet. submitted.
[7] Shakhmatov D., Tkačenko M.G., Wilson R.G.: Transversal and $T_1$-independent topologies. submitted.
[8] Simon P.: 
On accumulation points. Cahiers Topologie Géom. Différentielle Catégoriques 35 (1994), 321-327. 
MR 1307264 | 
Zbl 0858.54008[9] Smythe N., Wilkins C.A.: 
Minimal Hausdorff and maximal compact spaces. J. Austral. Math. Soc. 3 (1963), 167-177. 
MR 0154254 | 
Zbl 0163.17201[10] Steen L.A., Seebach J.A.: 
Counterexamples in Topology. Second Edition, Springer Verlag, New York, 1978. 
MR 0507446 | 
Zbl 0386.54001[11] Steiner A.K.: 
Complementation in the lattice of $T_1$-topologies. Proc. Amer. Math. Soc. 17 (1966), 884-885. 
MR 0193033[12] Steiner E.F., Steiner A.K.: 
Topologies with $T_1$-complements. Fund. Math. 61 (1967), 23-28. 
MR 0230277[13] Tkačenko M.G., Tkachuk V.V., Wilson R.G., Yaschenko I.V.: 
No submaximal topology on a countable set is $T_1$-complementary. Proc. Amer. Math. Soc. 128 1 (1999), 287-297. 
MR 1616605[14] Wilansky A.: 
Between $T_1$ and $T_2$. Amer. Math. Monthly 74 (1967), 261-266. 
MR 0208557