| Title: | Addition theorems and $D$-spaces (English) | 
| Author: | Arhangel'skii, A. V. | 
| Author: | Buzyakova, R. Z. | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 43 | 
| Issue: | 4 | 
| Year: | 2002 | 
| Pages: | 653-663 | 
| . | 
| Category: | math | 
| . | 
| Summary: | It is proved that if a regular space $X$ is the union of a finite family of metrizable subspaces then $X$ is a $D$-space in the sense of E.  van Douwen. It follows that if a regular space $X$ of countable extent is the union of a finite collection of metrizable subspaces then $X$ is Lindelöf. The proofs are based on a principal result of this paper: every space with a point-countable base is a $D$-space. Some other new results on the properties of spaces which are unions of a finite collection of nice subspaces are obtained. (English) | 
| Keyword: | $D$-space | 
| Keyword: | point-countable base | 
| Keyword: | extent | 
| Keyword: | metrizable space | 
| Keyword: | Lindelöf space | 
| MSC: | 54D20 | 
| MSC: | 54E35 | 
| MSC: | 54F99 | 
| idZBL: | Zbl 1090.54017 | 
| idMR: | MR2045787 | 
| . | 
| Date available: | 2009-01-08T19:25:55Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/119354 | 
| . | 
| Reference: | [1] Arens R., Dugundji J.: Remark on the concept of compactness.Portugal. Math. 9 (1950), 141-143. Zbl 0039.18602, MR 0038642 | 
| Reference: | [2] Arhangel'skii A.V., Buzyakova R.Z.: On some properties of linearly Lindelöf spaces.Topology Proc. 23 (1998), 1-11. Zbl 0964.54018, MR 1800756 | 
| Reference: | [3] Balogh Z., Gruenhage G., Tkachuk V.: Additivity of metrizability and related properties.Topology Appl. 84 (1998), 91-103. Zbl 0991.54032, MR 1611277 | 
| Reference: | [4] Boone J.R.: On irreducible spaces, 2.Pacific J. Math. 62.2 (1976), 351-357. MR 0418037 | 
| Reference: | [5] Borges C.R., Wehrly A.C.: A study of $D$-spaces.Topology Proc. 16 (1991), 7-15. Zbl 0787.54023, MR 1206448 | 
| Reference: | [6] Burke D.K.: Covering properties.in: K. Kunen and J. Vaughan, Eds, Handbook of Set-theoretic Topology, Chapter 9, pp.347-422; North-Holland, Amsterdam, New York, Oxford, 1984. Zbl 0569.54022, MR 0776628 | 
| Reference: | [7] Buzyakova R.Z.: On $D$-property of strong $\Sigma $-spaces.Comment. Math. Univ. Carolinae 43.3 (2002), 493-495. Zbl 1090.54018, MR 1920524 | 
| Reference: | [8] de Caux P.: A collectionwise normal, weakly $\theta $-refinable Dowker space which is neither irreducible nor realcompact.Topology Proc. 1 (1976), 66-77. Zbl 0397.54019 | 
| Reference: | [9] Christian U.: Concerning certain minimal cover refinable spaces.Fund. Math. 76 (1972), 213-222. MR 0372818 | 
| Reference: | [10] van Douwen E., Pfeffer W.F.: Some properties of the Sorgenfrey line and related spaces.Pacific J. Math. 81.2 (1979), 371-377. Zbl 0409.54011, MR 0547605 | 
| Reference: | [11] van Douwen E.K., Wicke H.H.: A real, weird topology on reals.Houston J. Math. 13.1 (1977), 141-152. MR 0433414 | 
| Reference: | [12] Ismail M., Szymanski A.: On the metrizability number and related invariants of spaces, 2.Topology Appl. 71.2 (1996), 179-191. MR 1399555 | 
| Reference: | [13] Ismail M., Szymanski A.: On locally compact Hausdorff spaces with finite metrizability number.Topology Appl. 114.3 (2001), 285-293. Zbl 1012.54002, MR 1838327 | 
| Reference: | [14] Michael E., Rudin M.E.: Another note on Eberlein compacts.Pacific J. Math. 72 (1977), 497-499. Zbl 0344.54018, MR 0478093 | 
| Reference: | [15] Ostaszewski A.J.: Compact $\sigma $-metric spaces are sequential.Proc. Amer. Math. Soc. 68 (1978), 339-343. MR 0467677 | 
| Reference: | [16] Rudin M.E.: Dowker spaces.in: K. Kunen and J. Vaughan, Eds, Handbook of Set-theoretic Topology, Chapter 17, pp.761-780; North-Holland, Amsterdam, New York, Oxford, 1984. Zbl 0566.54009, MR 0776636 | 
| Reference: | [17] Tkachenko M.G.: On compactness of countably compact spaces having additional structure.Trans. Moscow Math. Soc. 2 (1984), 149-167. | 
| Reference: | [18] Wicke H.H., Worrell J.M., Jr.: Point-countability and compactness.Proc. Amer. Math. Soc. 55 (1976), 427-431. Zbl 0323.54013, MR 0400166 | 
| Reference: | [19] Worrell J.M., Wicke H.H.: Characterizations of developable spaces.Canad. J. Math. 17 (1965), 820-830. MR 0182945 | 
| Reference: | [20] Worrell J.M., Jr., Wicke H.H.: A covering property which implies isocompactness. 1.Proc. Amer. Math. Soc. 79.2 (1980), 331-334. MR 0565365 | 
| . |