[1] Ahlfors L.V.: 
Möbius transformations in several dimensions. Univ. of Minnesota School of Mathematics, Minneapolis, Minnesota, 1981. 
MR 0725161 | 
Zbl 0663.30001[2] Bottema O.: 
On the medians of a triangle in hyperbolic geometry. Canad. J. Math. 10 502-506 (1958). 
MR 0100247 | 
Zbl 0084.37403[3] Chen J.-L., Ungar A.A.: 
The Bloch gyrovector. Found. Phys. 32 4 531-565 (2002). 
MR 1903786[4] Csörgö P.: H-connected transversals to abelian subgroups. preprint.
[5] Einstein A.: Zur Elektrodynamik Bewegter Körper [On the electrodynamics of moving bodies]. Ann. Physik (Leipzig) 17 891-921 (1905).
[6] Einstein A.: Einstein's Miraculous Years: Five Papers that Changed the Face of Physics. Princeton, Princeton, NJ, 1998. Edited and introduced by John Stachel. Includes bibliographical references. Einstein's dissertation on the determination of molecular dimensions - Einstein on Brownian motion - Einstein on the theory of relativity - Einstein's early work on the quantum hypothesis. A new English translation of Einstein's 1905 paper on pp.123-160.
[7] Fock V.: 
The Theory of Space, Time and Gravitation. The Macmillan Co., New York, 1964. Second revised edition. Translated from the Russian by N. Kemmer. A Pergamon Press Book. 
MR 0162586 | 
Zbl 0112.43804[8] Foguel T., Ungar A.A.: 
Involutory decomposition of groups into twisted subgroups and subgroups. J. Group Theory 3 (1) 27-46 (2000). 
MR 1736515 | 
Zbl 0944.20053[9] Foguel T., Ungar A.A.: 
Gyrogroups and the decomposition of groups into twisted subgroups and subgroups. Pacific J. Math. 197:1 1-11 (2001). 
MR 1810204 | 
Zbl 1066.20068[10] Foguel T., Kinyon M.K., Phillip J.D.: 
On twisted subgroups and Bol loops of odd order. Rocky Mountain J. Math., in print. 
MR 2228190[11] Hausner M.: 
A Vector Space Approach to Geometry. Dover Publications Inc., Mineola, NY, 1998. Reprint of the 1965 original. 
MR 1651732 | 
Zbl 0924.51001[13] Kinyon M.K., Ungar A.A.: 
The gyro-structure of the complex unit disk. Math. Mag. 73:4 273-284 (2000). 
MR 1822756[14] Kuznetsov E.: Transversals in loops. preprint.
[15] Lévay P.: 
The geometry of entanglement: metrics, connections and the geometric phase. arXiv:quant-ph/0306115 v1 2003. 
MR 2044194[16] Lévay P.: Mixed state geometric phase from Thomas rotations. arXiv:quant-ph/0312023 v1 2003.
[17] Ratcliffe J.G.: 
Foundations of hyperbolic manifolds. vol. 149 of {Graduate Texts in Mathematics}, Springer-Verlag, New York, 1994. 
MR 1299730 | 
Zbl 1106.51009[18] Sabinin L.V., Sabinina L.L., Sbitneva L.V.: 
On the notion of gyrogroup. Aequationes Math. 56 (1-2) 11-17 (1998). 
MR 1628291 | 
Zbl 0923.20051[19] Sexl R.U., Urbantke H.K.: 
Relativity, Groups, Particles. Springer-Verlag, Vienna, 2001. Special relativity and relativistic symmetry in field and particle physics; revised and translated from the third German (1992) edition by Urbantke. 
MR 1798479 | 
Zbl 1057.83001[20] Ungar A.A.: 
The relativistic noncommutative nonassociative group of velocities and the Thomas rotation. Resultate Math. 16 (1-2) (1989), 168-179. The term ``K-loop'' is coined here. 
MR 1020224 | 
Zbl 0693.20067[21] Ungar A.A.: 
Extension of the unit disk gyrogroup into the unit ball of any real inner product space. J. Math. Anal. Appl. 202:3 1040-1057 (1996). 
MR 1408366 | 
Zbl 0865.20055[22] Ungar A.A.: 
The hyperbolic Pythagorean theorem in the Poincaré disc model of hyperbolic geometry. Amer. Math. Monthly 106:8 759-763 (1999). 
MR 1718602 | 
Zbl 1004.51025[23] Ungar A.A.: 
Beyond the Einstein addition law and its gyroscopic Thomas precession. volume 117 of {Fundamental Theories of Physics}, Kluwer Academic Publishers Group, Dordrecht, 2001. The theory of gyrogroups and gyrovector spaces. 
MR 1978122 | 
Zbl 0972.83002[24] Ungar A.A.: 
The hyperbolic geometric structure of the density matrix for mixed state qubits. Found. Phys. 32 11 1671-1699 (2002). 
MR 1954912[25] Ungar A.A.: 
On the unification of hyperbolic and Euclidean geometry. Complex Variables Theory Appl. 49 (2004), 197-213. 
MR 2046396 | 
Zbl 1068.30038[26] Ungar A.A.: 
Einstein's special relativity: Unleashing the power of its hyperbolic geometry. preprint, 2004. 
MR 2187176 | 
Zbl 1071.83505