Article
Keywords:
Moufang loops; loops $M(G, 2)$; inverse property loops; Bol loops
Summary:
Let $G$ be a finite group and $C_2$ the cyclic group of order  $2$. Consider the $8$ multiplicative operations $(x,y)\mapsto (x^iy^j)^k$, where $i$, $j$, $k\in\{-1,\,1\}$. Define a new multiplication on $G\times C_2$ by assigning one of the above $8$ multiplications to each quarter $(G\times\{i\})\times(G\times\{j\})$, for $i, j\in C_2$. We describe all situations in which the resulting quasigroup is a Bol loop. This paper also corrects an error in P. Vojt\v{e}chovsk'y: On the uniqueness of loops $M(G,2)$.
References:
                        
[2] Chein O.: 
Moufang loops of small order. Memoirs of the American Mathematical Society, Volume 13, Issue 1, Number 197 (1978). 
MR 0466391 | 
Zbl 0378.20053[4] Drápal A.: 
How far apart can the group multiplication tables be?. European Journal of Combinatorics 13 (1992), 335-343. 
MR 1181074[5] Drápal A.: 
Non-isomorphic $2$-groups coincide at most in three quarters of their multiplication tables. European Journal of Combinatorics 21 (2000), 301-321. 
MR 1750166[6] Drápal A., Vojtěchovský P.: Moufang loops that share associator and three quarters of their multiplication tables. submitted.
[7] Goodaire E.G., May S., Raman M.: 
The Moufang Loops of Order less than $64$. Nova Science Publishers, 1999. 
MR 1689624 | 
Zbl 0964.20043[9] Pflugfelder H.O.: 
Quasigroups and Loops: Introduction. Sigma series in pure mathematics 7, Heldermann Verlag, Berlin, 1990. 
MR 1125767 | 
Zbl 0715.20043[11] Vojtěchovský P.: 
On the uniqueness of loops $M(G,2)$. Comment. Math. Univ. Carolinae 44 (2003), 4 629-365. 
MR 2062879 | 
Zbl 1101.20047[12] Vojtěchovský P.: 
The smallest Moufang loop revisited. Results in Mathematics 44 (2003), 189-193. 
MR 2011917 | 
Zbl 1050.20046