[AAH04] Abu Osba E., Henriksen M., Alkam O.: 
Combining local and von Neumann regular rings. Comm. Algebra 32 (7) (2004), 2639-2653. 
MR 2099923[B76] Blair R.: 
Special sets in which special sets are $z$-embedded. Canad. J. Math. 28 (1976), 673-690. 
MR 0420542[GJ76] Gillman L., Jerison M.: 
Rings of continuous functions. Graduate Texts in Math. 43, Springer, Berlin-Heidelberg-New York, 1976. 
MR 0407579 | 
Zbl 0327.46040[GH54] Gillman L., Henriksen M.: 
Concerning rings of continuous functions. Trans. Amer. Math. Soc. 77 (1954), 340-362. 
MR 0063646 | 
Zbl 0058.10003[HJ65] Henriksen M., Jerison M.: 
The space of minimal prime ideals of a commutative ring. Trans. Amer. Math. Soc. 115 (1965), 110-130. 
MR 0194880 | 
Zbl 0147.29105[HM93] Hager A., Martinez J.: 
Fraction-dense algebras and spaces. Canad. J. Math. 45 (1993), 997-996. 
MR 1239910 | 
Zbl 0795.06017[HP86] Hdeib H., Pareek C.M.: 
On spaces in which Lindelöf sets are closed. Questions Answers Gen. Topology 4 (1986), 3-13. 
MR 0852948 | 
Zbl 0603.54022[HWi(a)92] Henriksen M., Wilson R.G.: 
When is $C(X)/P$ a valuation domain for every prime ideal $P$?. Topology Appl. 44 (1992), 175-180. 
MR 1173255[HWi(b)92] Henriksen M., Wilson R.G.: 
Almost discrete $SV$-spaces. Topology Appl. 46 (1992), 89-97. 
MR 1184107[HWo88] Henriksen M., Woods R.G.: 
Weak $P$-spaces and $L$-closed spaces. Questions Answers Gen. Topology 6 (1988), 201-207. 
MR 1045615 | 
Zbl 0683.54030[HVW87] Henriksen M., Vermeer J., Woods R.G.: 
Quasi $F$-covers of Tychonoff spaces. Trans. Amer. Math. Soc. 303 (1987), 779-803. 
MR 0902798 | 
Zbl 0653.54025[HMW03] Henriksen M., Martinez J., Woods R.G.: 
Spaces $X$ in which all prime z-ideals of $C(X)$ are minimal or maximal. Comment. Math. Univ. Carolinae 44 (2003), 261-294. 
MR 2026163 | 
Zbl 1098.54013[HLMW94] Henriksen M., Larson S., Martinez J., Woods R.G.: 
Lattice-ordered algebras that are subdirect products of valuation domains. Trans. Amer. Math. Soc. 345 (1994), 195-221. 
MR 1239640 | 
Zbl 0817.06014[L97] Larson S.: 
f-rings in which every maximal ideal contains finitely many minimal prime ideals. Comm. Algebra 25 (1997), 3859-3888. 
MR 1481572 | 
Zbl 0952.06026[L03] Larson S.: 
Constructing rings of continuous functions in which there are many maximal ideals of nontrivial rank. Comm. Algebra 31 (2003), 2183-2206. 
MR 1976272[LR81] Levy R., Rice M.: 
Normal $P$-spaces and the $G_{\delta}$-topology. Colloq. Math. 44 (1981), 227-240. 
MR 0652582 | 
Zbl 0496.54034[M70] Montgomery R.: 
Structures determined by prime ideals of rings of functions. Trans. Amer. Math. Soc. 147 (1970), 367-380. 
MR 0256174 | 
Zbl 0222.54014[N69] Noble N.: 
Products with closed projections. Trans. Amer. Math. Soc. 140 (1969), 381-391. 
MR 0250261 | 
Zbl 0192.59701