Previous |  Up |  Next

Article

Title: Essential $P$-spaces: a generalization of door spaces (English)
Author: Osba, Emad Abu
Author: Henriksen, Melvin
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 3
Year: 2004
Pages: 509-518
.
Category: math
.
Summary: An element $f$ of a commutative ring $A$ with identity element is called a {\it von Neumann regular element\/} if there is a $g$ in $A$ such that $f^{2}g=f$. A point $p$ of a (Tychonoff) space $X$ is called a $P$-{\it point\/} if each $f$ in the ring $C(X)$ of continuous real-valued functions is constant on a neighborhood of $p$. It is well-known that the ring $C(X)$ is von Neumann regular ring iff each of its elements is a von Neumann regular element; in which case $X$ is called a $P$-{\it space\/}. If all but at most one point of $X$ is a $P$-point, then $X$ is called an {\it essential $P$-space\/}. In earlier work it was shown that $X$ is an essential $P$-space iff for each $f$ in $C(X)$, either $f$ or $1-f$ is von Neumann regular element. Properties of essential $P$-spaces (which are generalizations of J.L. Kelley's door spaces) are derived with the help of the algebraic properties of $C(X)$. Despite its simple sounding description, an essential $P$-space is not simple to describe definitively unless its non $P$-point $\eta$ is a $G_{\delta}$, and not even then if there are infinitely many pairwise disjoint cozerosets with $\eta$ in their closure. The general case is considered and open problems are posed. (English)
Keyword: $P$-point
Keyword: $P$-space
Keyword: essential $P$-space
Keyword: door space
Keyword: $F$-space
Keyword: basically disconnected space
Keyword: space of minimal prime ideals
Keyword: $SV$-ring
Keyword: $SV$-space
Keyword: rank
Keyword: von Neumann regular ring
Keyword: von Neumann local ring
Keyword: Lindelöf space
MSC: 13F30
MSC: 16A30
MSC: 16E50
MSC: 54G10
MSC: 54H13
idZBL: Zbl 1100.54024
idMR: MR2103145
.
Date available: 2009-05-05T16:47:00Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119478
.
Reference: [AAH04] Abu Osba E., Henriksen M., Alkam O.: Combining local and von Neumann regular rings.Comm. Algebra 32 (7) (2004), 2639-2653. MR 2099923
Reference: [B76] Blair R.: Special sets in which special sets are $z$-embedded.Canad. J. Math. 28 (1976), 673-690. MR 0420542
Reference: [E89] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [GJ76] Gillman L., Jerison M.: Rings of continuous functions.Graduate Texts in Math. 43, Springer, Berlin-Heidelberg-New York, 1976. Zbl 0327.46040, MR 0407579
Reference: [GH54] Gillman L., Henriksen M.: Concerning rings of continuous functions.Trans. Amer. Math. Soc. 77 (1954), 340-362. Zbl 0058.10003, MR 0063646
Reference: [HJ65] Henriksen M., Jerison M.: The space of minimal prime ideals of a commutative ring.Trans. Amer. Math. Soc. 115 (1965), 110-130. Zbl 0147.29105, MR 0194880
Reference: [HM93] Hager A., Martinez J.: Fraction-dense algebras and spaces.Canad. J. Math. 45 (1993), 997-996. Zbl 0795.06017, MR 1239910
Reference: [HP86] Hdeib H., Pareek C.M.: On spaces in which Lindelöf sets are closed.Questions Answers Gen. Topology 4 (1986), 3-13. Zbl 0603.54022, MR 0852948
Reference: [HWi(a)92] Henriksen M., Wilson R.G.: When is $C(X)/P$ a valuation domain for every prime ideal $P$?.Topology Appl. 44 (1992), 175-180. MR 1173255
Reference: [HWi(b)92] Henriksen M., Wilson R.G.: Almost discrete $SV$-spaces.Topology Appl. 46 (1992), 89-97. MR 1184107
Reference: [HWo88] Henriksen M., Woods R.G.: Weak $P$-spaces and $L$-closed spaces.Questions Answers Gen. Topology 6 (1988), 201-207. Zbl 0683.54030, MR 1045615
Reference: [HVW87] Henriksen M., Vermeer J., Woods R.G.: Quasi $F$-covers of Tychonoff spaces.Trans. Amer. Math. Soc. 303 (1987), 779-803. Zbl 0653.54025, MR 0902798
Reference: [HMW03] Henriksen M., Martinez J., Woods R.G.: Spaces $X$ in which all prime z-ideals of $C(X)$ are minimal or maximal.Comment. Math. Univ. Carolinae 44 (2003), 261-294. Zbl 1098.54013, MR 2026163
Reference: [HLMW94] Henriksen M., Larson S., Martinez J., Woods R.G.: Lattice-ordered algebras that are subdirect products of valuation domains.Trans. Amer. Math. Soc. 345 (1994), 195-221. Zbl 0817.06014, MR 1239640
Reference: [K55] Kelley J.L.: General Topology.Van Nostrand, New York, 1955. Zbl 0518.54001, MR 0070144
Reference: [L97] Larson S.: f-rings in which every maximal ideal contains finitely many minimal prime ideals.Comm. Algebra 25 (1997), 3859-3888. Zbl 0952.06026, MR 1481572
Reference: [L03] Larson S.: Constructing rings of continuous functions in which there are many maximal ideals of nontrivial rank.Comm. Algebra 31 (2003), 2183-2206. MR 1976272
Reference: [LR81] Levy R., Rice M.: Normal $P$-spaces and the $G_{\delta}$-topology.Colloq. Math. 44 (1981), 227-240. Zbl 0496.54034, MR 0652582
Reference: [M70] Montgomery R.: Structures determined by prime ideals of rings of functions.Trans. Amer. Math. Soc. 147 (1970), 367-380. Zbl 0222.54014, MR 0256174
Reference: [N69] Noble N.: Products with closed projections.Trans. Amer. Math. Soc. 140 (1969), 381-391. Zbl 0192.59701, MR 0250261
Reference: [Wa74] Walker R.: The Stone-Čech Compactification.Springer, New York, 1974. Zbl 0292.54001, MR 0380698
Reference: [We75] Weir M.: Hewitt-Nachbin Spaces.North Holland Publishing Co., Amsterdam, 1975. Zbl 0314.54002, MR 0514909
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-3_12.pdf 231.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo