[1] Bezzarga M.: 
Coexcessive functions and duality for semi-dynamical systems. Rev. Roumaine Math. Pures Appl. 42 1-2 (1997), 15-30. 
MR 1650071[2] Bezzarga M.: 
Théorie du potentiel pour les systèmes semi-dynamiques. Ph.D. Thesis, Faculty of Mathematics of the Bucharest University, Dec. 2000. 
Zbl 0861.31005[3] Bezzarga M., Bucur Gh.: 
Théorie du potentiel pour les systèmes semi-dynamiques. Rev. Roumaine Math. Pures Appl. 39 (1994), 439-456. 
MR 1298884 | 
Zbl 0861.31005[4] Bezzarga M., Bucur Gh.: 
Duality for Semi-Dynamical Systems. Potential Theory - ICPT94, Walter de Gruyter, Berlin-New York, 1996, pp.275-286. 
MR 1404713 | 
Zbl 0861.31006[6] Bhatia N.P., Hájek O.: 
Local Semi-Dynamical Systems. Lecture Notes in Math. 90, Springer, Berlin-New York, 1969. 
MR 0251328[7] Blumenthal R.M., Getoor R.K.: 
Markov Processes and Potential Theory. Academic Press, New York and London, 1968. 
MR 0264757 | 
Zbl 0169.49204[8] Boboc N., Bucur Gh., Cornea A.: 
Order and Convexity in Potential Theory. Lecture Notes in Math. 853, Springer, Berlin, 1981. 
MR 0613980 | 
Zbl 0534.31001[9] Boboc N., Bucur Gh.: 
Potential theory on ordered sets II. Rev. Roumaine Math. Pures Appl. 43 (1998), 685-720. 
MR 1845086 | 
Zbl 0995.31008[11] Getoor R.K.: 
Transience and Recurrence of Markov Process. Séminaire de Probabilité XIV 1978-1979, Lecture Notes in Math. 784, Springer, Berlin, 1980, pp.397-409. 
MR 0580144[12] Hájek O.: 
Dynamical Systems in the Plane. Academic Press, London-New York, 1968. 
MR 0240418[13] Saperstone S.H.: 
Semidynamical Systems in Infinite Dimensional Space. App. Math. Sciences 37, Springer, New York-Berlin, 1981. 
MR 0638477[14] Sharpe M.: 
General Theory of Markov Process. Pure and Applied Mathematics, 133, Academic Press, Inc., Boston, MA, 1988. 
MR 0958914