[1] Barletta G.: Applications of a critical point result for non-differentiable indefinite functionals. preprint.
[2] Barletta G., Marano S.A.: 
Some remarks on critical point theory for locally Lipschitz functions. Glasgow Math. J. 45 (2003), 131-141. 
MR 1972703 | 
Zbl 1101.58009[3] Bartolo P., Benci V., Fortunato D.: 
Abstract critical point theorems and applications to some nonlinear problems with ``strong'' resonance at infinity. Nonlinear Anal. 7 (1983), 981-1012. 
MR 0713209 | 
Zbl 0522.58012[4] Benci V., Rabinowitz P.H.: 
Critical point theorems for indefinite functionals. Invent. Math. 52 (1979), 241-273. 
MR 0537061 | 
Zbl 0465.49006[5] Chabrowski J.: 
Variational Methods for Potential Operator Equations. de Gruyter Ser. Nonlinear Anal. Appl. 24, de Gruyter, Berlin, 1997. 
MR 1467724 | 
Zbl 1157.35338[6] Chang K.-C.: 
Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102-129. 
MR 0614246 | 
Zbl 0487.49027[7] Clarke F.H.: 
Optimization and Nonsmooth Analysis. Classics in Applied Mathematics 5, SIAM, Philadelphia, 1990. 
MR 1058436 | 
Zbl 0696.49002[8] Costa D.G., Magalh aes C.: 
A unified approach to a class of strongly indefinite functionals. J. Differential Equations 125 (1996), 521-547. 
MR 1378765[9] Ding Y.: 
A remark on the linking theorem with applications. Nonlinear Anal. 22 (1994), 237-250. 
MR 1258960 | 
Zbl 0798.58014[10] Du Y.: 
A deformation lemma and some critical point theorems. Bull. Austral. Math. Soc. 43 (1991), 161-168. 
MR 1086730 | 
Zbl 0714.58008[11] Ghoussoub N.: 
Duality and Perturbation Methods in Critical Point Theory. Cambridge Tracts in Math. 107, Cambridge Univ. Press, Cambridge, 1993. 
MR 1251958 | 
Zbl 1143.58300[12] Hofer H.: 
On strongly indefinite functionals with applications. Trans. Amer. Math. Soc. 275 (1983), 185-214. 
MR 0678344 | 
Zbl 0524.58010[13] Motreanu D., Varga C.: 
Some critical point results for locally Lipschitz functionals. Comm. Appl. Nonlinear Anal. 4 (1997), 17-33. 
MR 1460105[14] Rabinowitz P.H.: 
Minimax methods in critical point theory with applications to differential equations. CBMS Reg. Conf. Ser. in Math. 65, Amer. Math. Soc., Providence, 1986. 
MR 0845785 | 
Zbl 0609.58002[15] Struwe M.: 
Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Second Edition, Ergeb. Math. Grenzgeb. (3) 34, Springer Verlag, Berlin, 1996. 
MR 1411681