[1] Aló R.A., Shapiro H.L.: 
Normal Topological Spaces. Cambridge University Press, New York-London, 1974. 
MR 0390985[2] Blum I., Swaminathan S.: 
Continuous selections and realcompactness. Pacific J. Math. 93 (1981), 251-260. 
MR 0623561 | 
Zbl 0457.54012[3] De Marco G., Wilson R.G.: 
Realcompactness and partitions of unity. Proc. Amer. Math. Soc. 30 (1971), 189-194. 
MR 0281155[5] Gillman L., Jerison M.: 
Rings of Continuous Functions. D. Van Nostrand Co., Inc., Princeton, NJ.-Toronto-London-New York, 1960. 
MR 0116199 | 
Zbl 0327.46040[6] Michael E.: 
Continuous selection I. Ann. Math. 63 (1956), 361-382. 
MR 0077107[7] Michael E.: 
A theorem on semi-continuous set-valued functions. Duke Math. J. 26 (1959), 647-651. 
MR 0109343 | 
Zbl 0151.30805[8] Nedev S.: 
Selection and factorization theorems for set-valued mappings. Serdica 6 (1980), 291-317. 
MR 0644284 | 
Zbl 0492.54006[9] Repovš D., Semenov P.V.: 
Continuous selections of multivalued mappings. Kluwer Acad. Publ., Dordrecht, 1998. 
MR 1659914[11] Wiscamb M.R.: 
The discrete countable chain condition. Proc. Amer. Math. Soc. 23 (1969), 608-612. 
MR 0248744 | 
Zbl 0184.26304[12] Wu X., Shen S.: 
A further generalization of Yannelis-Prabhakar's continuous selection theorem and its applications. J. Math. Anal. Appl. 197 (1996), 61-74. 
MR 1371276 | 
Zbl 0852.54019[13] Yannelis N.C., Prabhakar N.D.: 
Existence of maximal elements and equilibria in linear topological spaces. J. Math. Econom. 12 (1983), 233-245. 
MR 0743037 | 
Zbl 0536.90019